
XPhoneBERT: A Pre-trained Multilingual Model for Phoneme Representations for Text-to-Speech

Dat Quoc Nguyen Head of NLP department, VinAl https://datquocnguyen.github.io

Joint work with Linh The Nguyen & Thinh Pham

21/04/2023

- Language model BERT [1]—Bidirectional Encoder
 Representations from Transformers [2]
 - BERT and its variants, pre-trained on large-scale corpora, help improve the state-of-the-art performances of various NLP research and application tasks
 - Represent words by embedding vectors which encode the contexts where the words appear, i.e. contextualized word embeddings

https://towardsdatascience.com/bert-explained-state-of-the-a language-model-for-nlp-f8b21a9b6270

- Several Text-to-Speech (TTS) works incorporate contextualized word embeddings generated by the pre-trained BERT into their standard encoder [3, 4, 5]
 - An input phoneme sequence is fed into the standard encoder to produce phoneme representations
 - The corresponding input raw text is fed into BERT to obtain contextualized word embeddings
 - Concatenate the representations of the input phonemes with the corresponding BERT-based word embeddings to construct the input vectors of the TTS decoder (for decoding)

Phoneme sequence:'er məłti'lıŋwəl 'madəlRaw text:a multilingual model

- Several Text-to-Speech (TTS) works incorporate contextualized word embeddings generated by the pre-trained BERT into their standard encoder [3, 4, 5]
 - Provide extra contextual information for phoneme representation
- Pre-trained models for phoneme representations, including PnG BERT [6], Mixed-Phoneme BERT [7] and Phoneme-level BERT [8], help improve advanced TTS systems
 - PnG BERT takes both phonemes and graphemes (i.e. subword tokens) as the input
 - Mixed-Phoneme BERT takes both phonemes and sup-phoneme tokens as the input
 - Phoneme-level BERT only takes phonemes as the input

- Pre-trained models for phoneme representations, including PnG BERT [6], Mixed-Phoneme BERT [7] and Phoneme-level BERT [8], help improve advanced TTS systems
 - Limited to English only
 - Not publicly available

➔ A need of developing pre-trained models for phoneme representations in languages other than English

• Our contributions:

- Present the first large-scale pre-trained multilingual model for phoneme representations, named XPhoneBERT
- XPhoneBERT helps significantly improve the performance of the strong TTS baseline VITS [9]
- We will publicly release XPhoneBERT

VinAl Corporate Presentation

Pre-training XPhoneBERT

- Multilingual pre-training data
 - Raw dataset collection: Collect texts for the 90+ languages and locales supported by CharsiuG2P
 [10], from multilingual datasets wiki40b and wikipedia
 - Perform word and sentence segmentation as well as duplicate removal and text normalization
 - Text-to-phoneme conversion
 - Phoneme segmentation

Pre-training XPhoneBERT

- Multilingual pre-training data
 - Raw dataset collection
 - *Text-to-phoneme conversion*: Employ the grapheme-to-phoneme conversion toolkit CharsiuG2P to convert sentences into their phonemic description
 - *Phoneme segmentation*: Employ the **segments** toolkit for phoneme segmentation for a better map between phonemes and speech
 - Demonstration example:

a multilingual model \rightarrow CharsiuG2P \rightarrow 'er məłti'lıŋwəł 'madəł \rightarrow segments \rightarrow 'er məłti'lıŋwəł i'm a dəł

Pre-training XPhoneBERT

- Multilingual pre-training data
 - A pre-training corpus of 330M phoneme-level sentences across 94 languages and locales

LCode	#s (K)	LCode	#s (K)	LCode	#s (K)
ady	2	glg	3793	ron	1816
afr	1793	grc	947	rus	15923
amh	73	gre	947	san	114
ara	2820	grn	60	slo	1143
arg	383	guj	211	slv	1167
arm-e	2989	hbs-cyrl	2007	sme	27
arm-w	175	hbs-latn	2007	snd	215
aze	3139	hin	287	spa	3936
bak	1272	hun	4372	spa-latin	3936
bel	2750	ice	776	spa-me	3936
ben	1785	ido	224	sqi	1373
bos	1464	ina	100	srp	2449
bul	1919	ind	2196	swa	537
bur	393	ita	12335	swe	5226
cat	4017	jam	8	tam	2289
cze	4542	jpn	12197	tat	984
dan	1714	kaz	1850	tgl	628
dut	7683	khm	93	tha	567
egy	3093	kor	2384	tts	567
eng-uk	33515	kur	335	tuk	105
eng-us	33515	lat-clas	597	tur	2148
epo	4333	lat-eccl	597	ukr	6967
est	1558	lit	1087	vie-c	2519
eus	3429	ltz	817	vie-n	2519
fas	1957	mac	2597	vie-s	2519
fin	4100	min	377	wel-nw	714
fra	11255	mlt	180	wel-sw	714
fra-qu	11255	ori	158	yue	908
geo	1211	pap	27	zho-s	6934
ger	33845	pol	7045	zho-t	6955
gla	121	por-bz	3437	_	_
gle	488	por-po	3437	_	_

≝⋛Vin∧i

VinAl 9

XPhoneBERT

Corporate Presentation

Pre-training XPhoneBERT

- Pre-training approach
 - Employ the BERT-base model architecture
 - Use a whitespace tokenizer, thus resulting in a vocabulary of 1960 phoneme types, and a model of 87.6M parameters
 - Use the masked language modeling objective and follow the RoBERTa pre-training approach [11]
 - Use a dynamic masking strategy and without the next sentence prediction objective
 - Train for 20 epochs in about 18 days

- Evaluate the effectiveness of XPhoneBERT on the TTS task for English and Vietnamese
 - English: Training, validation and test sets of 12,500, 100 and 500 audio clips
 - Vietnamese: Training, validation and test sets of 12,000, 100 and 200 clips
- Employ the strong TTS model VITS [9] as the baseline
 - VITS is an end-to-end model that contains a Transformer encoder to encode the input phoneme sequence
- Extend VITS with XPhoneBERT by replacing the VITS's encoder with XPhoneBERT

- Two training settings using **100%** and **5%** of the TTS training data
- Evaluation metrics
 - Subjective evaluation: For each language, following [9], we randomly select 50 ground truth test audios and their text transcription to measure the Mean Opinion Score (MOS)
 - Objective evaluation: We compute two metrics of the mel-cesptrum distance (MCD) and the F0 root mean square error (RMSE; cent)

- XPhoneBERT helps improve the performance of VITS on all three evaluation metrics for both English and Vietnamese in both experimental settings
 - 100% of the training set for training: MOS significantly increases from 4.00 to 4.14 (+0.14) for English and from 3.74 to 3.89 (+0.15) for Vietnamese
 - 5% of the training set for training: MOS increases from 2.88 to 3.22 (+0.34) for English and especially from 1.59 to 3.35 (+1.76) for Vietnamese

Obtained results on the English test set

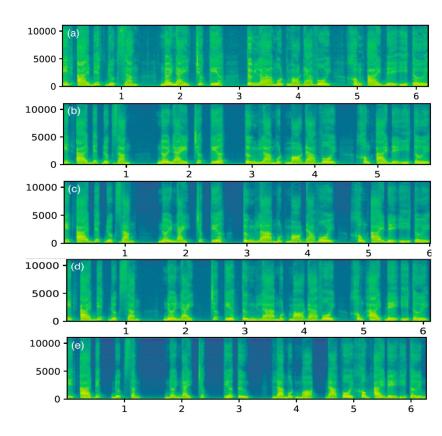
Model		$MOS(\uparrow)$	$MCD(\downarrow)$	$RMSE_{F_0}(\downarrow)$
	Ground truth	4.39 ± 0.08	0.00	0.00
0%(Baseline VITS	4.00 ± 0.08	7.04	377
10(VITS w/ XPB	$\textbf{4.14} \pm 0.07$	6.63	348
5%	Baseline VITS	2.88 ± 0.11	7.40	407
50	VITS w/ XPB	3.22 ± 0.11	7.15	383

Obtained results on the Vietnamese test set

Model		$MOS(\uparrow)$	$\mathbf{MCD}\left(\downarrow\right)$	$RMSE_{F_0}(\downarrow)$
	Ground truth	4.26 ± 0.06	0.00	0.00
%	Baseline VITS	3.74 ± 0.08	5.41	249
100	VITS w/ XPB	$\textbf{3.89}\pm0.08$	5.12	234
5%	Baseline VITS		6.20	291
S,	VITS w/ XPB	3.35 ± 0.10	5.39	248

- MOS is not "always" correlated with MCD and RMSE
 - For Vietnamese, VITS under the first setting (100%) obtains higher MOS but slightly poorer MCD and RMSE thanVITS extended with XPhoneBERT under the second setting (5%)
- XPhoneBERT helps synthesize fairly high-quality speech with limited training data (5%)

Obtained results on the English test set


Model		$MOS(\uparrow)$	$MCD(\downarrow)$	$RMSE_{F_0}(\downarrow)$
	Ground truth	4.39 ± 0.08	0.00	0.00
0%(Baseline VITS		7.04	377
10(VITS w/ XPB	4.14 ± 0.07	6.63	348
5%	Baseline VITS	2.88 ± 0.11	7.40	407
5	VITS w/ XPB	3.22 ± 0.11	7.15	383

Obtained results on the Vietnamese test set

	Model	$MOS(\uparrow)$	$MCD(\downarrow)$	$RMSE_{F_0}(\downarrow)$
	Ground truth	4.26 ± 0.06	0.00	0.00
0%(Baseline VITS	3.74 ± 0.08	5.41	249
10(VITS w/ XPB	3.89 ± 0.08	5.12	234
5%	Baseline VITS		6.20	291
5	VITS w/ XPB	3.35 ± 0.10	5.39	248

- Spectrograms visualization by different models, illustrating that XPhoneBERT helps improve the spectral details of the baseline VITS's output
 - "Ít ai biết được rằng nơi này trước kia từng là một mỏ đá vôi không ai để ý tới" (Little is known that this place was once a limestone quarry that no one paid any attention to)
 - (a): Ground truth
 - (b): VITS with XPhoneBERT (100%)
 - (c): VITS with XPhoneBERT (5%)
 - (d): Original VITS (100%)
 - (e): Original VITS (5%)

Takeaways

- XPhoneBERT is the first large-scale multilingual language model pre-trained for phoneme representations
- Using XPhoneBERT as an input phoneme encoder improves the quality of the speech synthesized by a strong neural TTS baseline
 - XPhoneBERT also helps produce fairly high-quality speech when the training data is limited
- We will publicly release XPhoneBERT, which can be used with popular libraries fairseq and transformers

Thank you!

@VinAl

https://www.vinai.io/

References

- 1. BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding
- 2. Attention is All you Need
- 3. Pre-Trained Text Embeddings for Enhanced Text-to-Speech Synthesis
- 4. Improving the Prosody of RNN-based English Text-To-Speech Synthesis by Incorporating a BERT model
- 5. Improving Prosody Modelling with Cross-Utterance BERT Embeddings for End-to-end Speech Synthesis
- 6. PnG BERT: Augmented BERT on Phonemes and Graphemes for Neural TTS
- 7. Mixed-Phoneme BERT: Improving BERT with Mixed Phoneme and Sup-Phoneme Representations for Text to Speech
- 8. Phoneme-Level BERT for Enhanced Prosody of Text-to-Speech with Grapheme Predictions
- 9. Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
- 10. ByT5 model for massively multilingual grapheme-to-phoneme conversion
- 11. RoBERTa: A Robustly Optimized BERT Pretraining Approach

