Modeling Topics and Knowledge Bases with Embeddings

Dat Quoc Nguyen

Department of Computing Macquarie University Sydney, Australia

August 2016

- Mark Johnson
- Kairit Sirts
- Lizhen Qu
- Richard Billingsley
- Lan Du

Outline

General introduction

Improving topic models with word embeddings

- Introduction
- Latent-feature topic models
- Experimental evaluation
- Summary

- Introduction
- Our neighborhood mixture model
- Experimental evaluation
- Summary

Use vector representations for improving topic models as well as for improving link prediction in knowledge bases (i.e. knowledge base completion)

• Incorporate word embeddings trained on large external corpora to improve topic modeling on smaller datasets

Nguyen et al. "Improving Topic Models with Latent Feature Word Representations." *Transactions of ACL*, 2015, vol. 3, pp. 299-313.

 Predict the missing relationships between entities in knowledge bases Nguyen et al. "Neighborhood Mixture Model for Knowledge Base Completion." In *Proceedings of CoNLL 2016*, pp. 40-50.

Nguyen et al. "STransE: a novel embedding model of entities and relationships in knowledge bases." In *Proceedings of NAACL-HLT 2016*, pp. 460-466.

Outline

General introduction

Improving topic models with word embeddings

- Introduction
- Latent-feature topic models
- Experimental evaluation
- Summary

- Introduction
- Our neighborhood mixture model
- Experimental evaluation
- Summary

2 Improving topic models with word embeddings

- Introduction
- Latent-feature topic models
- Experimental evaluation
- Summary

- Topic models take a corpus of documents as input, and
 - Learn a set of latent *topics* for the corpus
 - Infer document-to-topic and topic-to-word distributions from co-occurrence of words within documents
- If the corpus is small and/or the documents are short, the topics will be noisy due to the limited information of word co-occurrence
- Latent word representations learnt from large external corpora capture various aspects of word meanings
 - ▶ We used the pre-trained Word2Vec (Mikolov et al., 2013) and Glove (Pennington et al., 2014) word representations

- Use the word representations learnt on a large external corpus to improve the topic-word distributions in a topic model
 - Combine Latent Dirichlet Allocation (Blei et al., 2003) and Dirichlet Multinomial Mixture (Nigam et al., 2000) with the word representations
 - Improvement is greatest on small corpora with short documents

- Latent Dirichlet Allocation (LDA)
- $\begin{array}{ccc} \theta_d \sim \operatorname{Dir}(\alpha) & z_{d_i} \sim \operatorname{Cat}(\theta_d) \\ \phi_z \sim \operatorname{Dir}(\beta) & w_{d_i} \sim \operatorname{Cat}(\phi_{z_{d_i}}) \end{array} & & & & & \\ \end{array}$
 - Dirichlet Multinomial Mixture (DMM) model: one-topic-per-document

 Inference is typically performed with a *Gibbs sampler*, integrating out θ and φ (Griffiths et al., 2004; Yin and Wang, 2014)

2 Improving topic models with word embeddings

- Introduction
- Latent-feature topic models
- Experimental evaluation
- Summary

Latent-feature topic-to-word distributions

- We assume that each word w is associated with a word vector ω_w
- We learn a *topic vector* au_t for each topic t
- We use these to define a latent feature topic-to-word distribution CatE(w) over words:

$$\mathsf{CatE}(w \mid \boldsymbol{\tau}_t \boldsymbol{\omega}^{ op}) \propto \exp(\boldsymbol{\tau}_t \cdot \boldsymbol{\omega}_w)$$

- ▶ ${m au}_t {m \omega}^{\scriptscriptstyle op}$ is a vector of unnormalized scores, one per word
- In our topic models, we *mix the* CatE *distribution* with a multinomial distribution over words
 - Combine information from a large, general corpus (via the CatE distribution) and a smaller but more specific corpus (via the multinomial distribution)
 - Use a Boolean *indicator variable* that records whether a word is generated from CatE or the multinomial distribution

The Latent Feature LDA (LF-LDA) model

- Replace the topic-to-word Dirichlet multinomial component in LDA with a two-component mixture of a topic-to-word Dirichlet multinomial component and a latent feature topic-to-word component
- s_{di} is the Boolean indicator variable indicating whether word w_{di} is generated from the latent feature component
- λ is a user-specified hyper-parameter determining how often words are generated from the latent feature component
 - If we estimated λ from data, we expect it would never generate through the latent feature component

The Latent Feature DMM (LF-DMM) model

 $\begin{array}{l} \boldsymbol{\theta} \sim \mathsf{Dir}(\alpha) & z_d \sim \mathsf{Cat}(\boldsymbol{\theta}) \\ \boldsymbol{\phi}_z \sim \mathsf{Dir}(\beta) & s_{d_i} \sim \mathsf{Ber}(\lambda) \\ w_{d_i} \sim (1 - s_{d_i})\mathsf{Cat}(\boldsymbol{\phi}_{z_d}) + s_{d_i}\mathsf{Cat}\mathsf{E}(\boldsymbol{\tau}_{z_d} \, \boldsymbol{\omega}^{\top}) \end{array}$

- Replace the topic-to-word Dirichlet multinomial component in DMM with a two-component mixture of a topic-to-word Dirichlet multinomial component and a latent feature topic-to-word component
- *s*_{*d_i*} is the Boolean indicator variable indicating whether word *w*_{*d_i*} is generated from the latent feature component
- λ is a user-specified hyper-parameter determining how often words are generated from the latent feature component

- We integrate out θ and ϕ as in the Griffiths et al. (2004) sampler, and interleave MAP estimation for τ with Gibbs sweeps for the other variables
- Algorithm outline:

initialize the word-topic variables z_{d_i} using the LDA sampler repeat:

```
for each topic t:

use LBFGS to optimize the L2-regularized log-loss

\tau_t = \arg \max_{\tau_t} P(\tau_t \mid z, s)

for each document d and each word location i:

sample z_{d_i} from P(z_{d_i} \mid z_{\neg d_i}, s_{\neg d_i}, \tau)

sample s_{d_i} from P(s_{d_i} \mid z, s_{\neg d_i}, \tau)
```

- We integrate out θ and ϕ as in the Yin and Wang (2014) sampler, and interleave MAP estimation for τ with Gibbs sweeps
- Algorithm outline:

initialize the word-topic variables z_{d_i} using the DMM sampler repeat:

```
for each topic t:

use LBFGS to optimize the L2-regularized log-loss

\tau_t = \arg \max_{\tau_t} P(\tau_t \mid z, s)

for each document d:

sample z_d and s_d from P(z_d, s_d \mid z_{\neg d}, s_{\neg d}, \tau)
```

2 Improving topic models with word embeddings

- Introduction
- Latent-feature topic models
- Experimental evaluation
- Summary

Goals of evaluation

- A topic model learns document-topic and topic-word distributions:
 - Topic coherence evaluates the topic-word distributions
 - Document clustering and document classification evaluate the document-topic distribution
- Do the Word2Vec and Glove word vectors behave differently in topic modelling? (w2v-LDA, glove-LDA, w2v-DMM, glove-DMM)
- We expect that the latent feature component will have *the greatest impact on small corpora*, so our evaluation focuses on them:

Dataset		# labels	$\# \operatorname{docs}$	words/doc	# types
N20	20 newsgroups	20	18,820	103.3	19,572
N20short	\leq 20 words	20	1,794	13.6	6,377
N20small	400 docs	20	400	88.0	8,157
TMN	TagMyNews	7	32,597	18.3	13,428
TMNtitle	TagMyNews titles	7	32,503	4.9	6,347
Twitter		4	2,520	5.0	1,390

Topic coherence evaluation

- Lau et al. (2014) showed that *human scores on a word intrusion task* are highly correlated with the *normalized pointwise mutual information* (NPMI)
- We found latent feature vectors produced a *significant improvement of* NPMI scores on all models and corpora
 - Greatest improvement when $\lambda = 1$ (unsurprisingly)

NPMI scores on the N20short dataset, varying the mixture weight λ from 0.0 to 1.0. $$^{18/48}$$

w2v-DMM on TagMyNews titles corpus

Topic 1		T	opic 3	Topic 4		
DMM	w2v-DMM	DMM	w2v-DMM	DMM	w2v-DMM	
japan	japan	u.s.	prices	egypt	libya	
nuclear	nuclear	oil	sales	<u>china</u>	egypt	
u.s.	u.s.	japan	oil	u.s	iran	
crisis	plant	prices	u.s.	mubarak	mideast	
plant	quake	stocks	profit	<u>bin</u>	opposition	
<u>china</u>	radiation	sales	stocks	libya	protests	
libya	earthquake	profit	japan	laden	leader	
radiation	tsunami	<u>fed</u>	rise	<u>france</u>	syria	
<u>u.n.</u>	nuke	rise	gas	bahrain	u.n.	
vote	crisis	growth	growth	<u>air</u>	tunisia	
<u>korea</u>	disaster	<u>wall</u>	shares	report	chief	
europe	power	street	price	rights	protesters	
government	oil	<u>china</u>	profits	court	mubarak	
election	japanese	<u>fall</u>	rises	u.n.	crackdown	
<u>deal</u>	plants	shares	earnings	<u>war</u>	bahrain	

- Table shows the 15 most probable topical words found by 20-topic w2v-DMM on the TMNtitle corpus
- Words found by DMM but not by w2v-DMM are underlined
- Words found by w2v-DMM but not DMM are in bold

Document clustering evaluation (1)

- Cluster documents by assigning them to the highest probability topic
- Evaluate clusterings by purity and normalized mutual information (NMI)

Purity and NMI results on the N20short dataset, varying the mixture weight λ from 0.0 to 1.0.

- In general, best results with $\lambda = 0.6$
- \Rightarrow Set $\lambda = 0.6$ in all further experiments

Document clustering evaluation (2)

Data	Mathad	Pu	rity	NMI		
Data	Method	T=4	T=20	T=4	T=20	
	LDA	0.559 ± 0.020	0.614 ± 0.016	0.196 ± 0.018	0.174 ± 0.008	
Twitter	w2v-LDA	$\textbf{0.598} \pm 0.023$	$\textbf{0.635} \pm 0.016$	$\textbf{0.249} \pm 0.021$	$\textbf{0.191} \pm 0.011$	
	glove-LDA	0.597 ± 0.016	$\textbf{0.635} \pm 0.014$	0.242 ± 0.013	$\textbf{0.191} \pm 0.007$	
	Improve.	0.039	0.021	0.053	0.017	
	DMM	0.523 ± 0.011	0.619 ± 0.015	0.222 ± 0.013	0.213 ± 0.011	
Twitter	w2v-DMM	$\textbf{0.589} \pm 0.017$	0.655 ± 0.015	0.243 ± 0.014	0.215 ± 0.009	
	glove-DMM	0.583 ± 0.023	$\textbf{0.661} \pm 0.019$	$\textbf{0.250} \pm 0.020$	$\textbf{0.223} \pm 0.014$	
	Improve.	0.066	0.042	0.028	0.01	

- On the short, our models obtain better clustering results than the baseline models:
 - ▶ on N20small, we get 6.0% improvement on NMI at T = 6
 - ▶ on TMN and TMNtitle, we obtain 6.1% and 2.5% higher Purity at T = 80

- For small $T \leq 7$, on the large datasets of N20, TMN and TMNtitle, our models and baseline models obtain similar clustering results
- With larger *T*, our models perform better than baselines on the short TMN and TMNtitle datasets. On the N20 dataset, the baseline LDA model obtains slightly higher clustering results than ours
- No reliable difference between Word2Vec and Glove vectors

Document classification (1)

• Use SVM to predict the ground truth label from the topic-proportion vector of each document

 F_1 scores on N20short dataset, varying the mixture weight λ from 0.0 to 1.0.

Data Mathod		$\lambda = 0.6$					
	Internou	T=6	T=20	T=40	T=80		
	LDA	0.204 ± 0.020	0.392 ± 0.029	0.459 ± 0.030	0.477 ± 0.025		
N20small	w2v-LDA	$\textbf{0.213} \pm 0.018$	$\textbf{0.442} \pm 0.025$	$\textbf{0.502} \pm 0.031$	$\textbf{0.509} \pm 0.022$		
	glove-LDA	0.181 ± 0.011	0.420 ± 0.025	0.474 ± 0.029	0.498 ± 0.012		
	Improve.	0.009	0.05	0.043	0.032		

Document classification (2)

Data	Mathad		$\lambda=$ 0.6					
Dala	Method	T=7	T=20	T=40	T=80			
	DMM	0.607 ± 0.040	0.694 ± 0.026	0.712 ± 0.014	0.721 ± 0.008			
TMN	w2v-DMM	0.607 ± 0.019	0.736 ± 0.025	0.760 ± 0.011	0.771 ± 0.005			
	glove-DMM	$\textbf{0.621} \pm 0.042$	$\textbf{0.750} \pm 0.011$	0.759 ± 0.006	$\textbf{0.775} \pm 0.006$			
	Improve.	0.014	0.056	0.048	0.054			
	DMM	0.500 ± 0.021	0.600 ± 0.015	0.630 ± 0.016	0.652 ± 0.005			
TMNtitle	w2v-DMM	0.528 ± 0.028	0.663 ± 0.008	0.682 ± 0.008	$\textbf{0.681} \pm 0.006$			
	glove-DMM	$\textbf{0.565} \pm 0.022$	$\textbf{0.680} \pm 0.011$	$\textbf{0.684} \pm 0.009$	$\textbf{0.681} \pm 0.004$			
	Improve.	0.065	0.08	0.054	0.029			
Data	Mathad	$\lambda = 0.6$						
Dala	Wiethou	T=4	T=20	T=40	T=80			
	LDA	0.526 ± 0.021	0.636 ± 0.011	0.650 ± 0.014	0.653 ± 0.008			
Twitter	w2v-LDA	$\textbf{0.578} \pm 0.047$	0.651 ± 0.015	0.661 ± 0.011	$\textbf{0.664} \pm 0.010$			
	glove-LDA	0.569 ± 0.037	$\textbf{0.656} \pm 0.011$	$\textbf{0.662} \pm 0.008$	0.662 ± 0.006			
	Improve.	0.052	0.02	0.012	0.011			
	DMM	0.469 ± 0.014	0.600 ± 0.021	0.645 ± 0.009	0.665 ± 0.014			
Twitter	w2v-DMM	$\textbf{0.539} \pm 0.016$	0.649 ± 0.016	0.656 ± 0.007	0.676 ± 0.012			
	glove-DMM	0.536 ± 0.027	$\textbf{0.654} \pm 0.019$	0.657 ± 0.008	$\textbf{0.680} \pm 0.009$			
	Improve.	0.07	0.054	0.012	0.015			

2 Improving topic models with word embeddings

- Introduction
- Latent-feature topic models
- Experimental evaluation
- Summary

- Latent feature vectors induced from large external corpora can be used to improve topic modeling
 - Latent features significantly improve topic coherence across a range of corpora with both the LDA and DMM models
 - Document clustering and document classification also significantly improve, even though these depend directly only on the document-topic distribution
- The improvements were greatest for small document collections and/or for short documents
- We did not detect any reliable difference between Word2Vec and Glove vectors
- Retrain the word vectors to fit the topic-modeling corpus
- More sophisticated latent-feature models of topic-word distributions
- More efficient training procedures

Outline

1 General introduction

2 Improving topic models with word embeddings

- Introduction
- Latent-feature topic models
- Experimental evaluation
- Summary

- Introduction
- Our neighborhood mixture model
- Experimental evaluation
- Summary

2 Improving topic models with word embeddings

- Introduction
- Our neighborhood mixture model
- Experimental evaluation
- Summary

- Knowledge bases (KBs) of real-world triple facts (head entity, relation, tail entity) are useful resources for NLP tasks
- Issue: large KBs are still far from complete
- So it is useful to perform *link prediction in KBs* or *knowledge base completion* (KBC): predict which triples not in a knowledge base are likely to be true

Figure extracted from "Jason Weston and Antoine Bordes. 2014. Embedding Methods for NLP. *EMNLP 2014 tutorial.*"

- Embedding models for KBC:
 - Associate entities and/or relations with dense feature vectors or matrices
 - Obtain SOTA performance and generalize to large KBs
- Most embedding models for KBC learn only from triples
- Recent works show that the relation paths between entities in KBs provide useful information and improve KBC

(Harrison Ford, **born_in_hospital**/r₁, Swedish Covenant Hospital)

 \Rightarrow (Swedish Covenant Hospital, located_in_city/r₂, Chicago)

 \Rightarrow (Chicago, city_in_country/r₃, United States)

Relation path $p=\{r_1,r_2,r_3\}$ is useful for predicting the relationship "nationality" between the head and tail entities

• **Our motivation**: neighborhoods could provide lots of useful information for predicting the relationship between the entities

 $\begin{aligned} & \mathsf{Ben}_{\mathsf{A}}\mathsf{ffleck} \\ &= \omega_{r,1}(\mathsf{Violet}_{\mathsf{A}}\mathsf{nne},\mathsf{child}_{\mathsf{o}}\mathsf{o}\mathsf{f}) \\ &+ \omega_{r,2}(\mathsf{male},\mathsf{gender}^{-1}) \\ &+ \omega_{r,3}(\mathsf{Los}_{\mathsf{A}}\mathsf{ngeles},\mathsf{live}_{\mathsf{i}}\mathsf{in}^{-1}) \\ &+ \omega_{r,4}(\mathsf{Oscar}_{\mathsf{a}}\mathsf{ward},\mathsf{won}^{-1}) \end{aligned}$

2 Improving topic models with word embeddings

A new embedding model for knowledge base completion
 Introduction

Our neighborhood mixture model

- Experimental evaluation
- Summary

Our neighbor-based entity representation

$$\begin{split} \mathcal{E} &= \{ \text{Ben_Affleck, Los_Angeles, ...} \} \\ \mathcal{R} &= \{ \text{live_in, won, child_of, gender, ...} \} \\ \mathcal{G} &= \{ (\text{Violet_Anne, child_of, Ben_Affleck}), \\ &\quad (\text{Ben_Affleck, won, Oscar_award}), \\ &\quad (\text{Ben_Affleck, live_in, Los_Angeles}), ... \} \end{split}$$

$$\begin{split} \mathcal{N}_{e} \text{ is the set of all entity and relation pairs} \\ \text{that are neighbors for entity } e \\ \mathcal{N}_{\mathsf{Ben_Affleck}} &= \{(\mathsf{Violet_Anne, child_of}), \\ & (\mathsf{male, gender}^{-1}), \\ & (\mathsf{Los_Angeles, live_in}^{-1}), \\ & (\mathsf{Oscar_award, won}^{-1})\} \end{split}$$

Our neighbor-based entity representation

- $\mathbf{v}_e \in \mathbb{R}^k$: k-dimensional "base" vector associated with entity e
- $u_{e,r} \in \mathbb{R}^k$: relation-specific entity vector, $e \in \mathcal{E}, \ r \in \mathcal{R} \cup \mathcal{R}^{-1}$
- The neighborhood-based entity representation $\vartheta_{e,r}$ for an entity *e* for predicting the relation *r* is defined as follows:

$$\vartheta_{e,r} = a_e \boldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} \boldsymbol{u}_{e',r'}$$
(1)

 a_e and $b_{r,r'}$ are the mixture weights that are constrained to sum to 1:

$$a_e \propto \delta + \exp \alpha_e \tag{2}$$

$$b_{r,r'} \propto \exp \beta_{r,r'}$$
 (3)

 $\delta \ge 0$: hyper-parameter α_{e} , $\beta_{r,r'}$: learnable exponential mixture parameters

Our neighbor-based entity representation

$$\vartheta_{e,r} = a_e v_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} u_{e',r'}$$
Violet Anne
lecturer
child of
occupation?
e, child_of),
er^{-1}),
s, live_in^{-1}),
d, won^{-1})}
Use Anne
live in
occupation?
film maker
Oscar award

$$r =$$
 ben_Ameck
 $r =$ occupation
 $\mathcal{N}_e = \{(Violet_Anne, content) \}$

Dam Afflaal.

Our new embedding model TransE-NMM for KBC

- Embedding models define for each triple $(h, r, t) \in G$, a score function f(h, r, t) that measures its implausibility
- **Goal**: choose f such that the score f(h, r, t) of a plausible triple (h, r, t) is smaller than the score f(h', r', t') of an implausible triple (h', r', t').
- Entity e and relation r are represented with vectors $m{v}_e \in \mathbb{R}^k$ and $m{v}_r \in \mathbb{R}^k$

$$f(h, r, t)_{\mathsf{TransE}} = \| \mathbf{v}_h + \mathbf{v}_r - \mathbf{v}_t \|_{\ell_{1/2}}$$

• The score function of our new model TransE-NMM is defined as follows:

$$f(h,r,t) = \|\boldsymbol{\vartheta}_{h,r} + \boldsymbol{v}_r - \boldsymbol{\vartheta}_{t,r^{-1}}\|_{\ell_{1/2}}$$
(4)

$$\boldsymbol{\vartheta}_{e,r} = a_e \boldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} \boldsymbol{u}_{e',r'}$$

Our new embedding model TransE-NMM for KBC

$$\boldsymbol{\vartheta}_{e,r} = \boldsymbol{a}_{e} \boldsymbol{v}_{e} + \sum_{(e',r') \in \mathcal{N}_{e}} \boldsymbol{b}_{r,r'} (\boldsymbol{v}_{e'} + \boldsymbol{v}_{r'})$$

$$\begin{split} e &= \mathsf{Ben}_\mathsf{Affleck} \\ r &= \mathsf{occupation} \\ \mathcal{N}_e &= \{(\mathsf{Violet}_\mathsf{Anne}, \mathsf{child}_\mathsf{of}), \\ & (\mathsf{male}, \mathsf{gender}^{-1}), \\ & (\mathsf{Los}_\mathsf{Angeles}, \mathsf{live}_\mathsf{in}^{-1}), \\ & (\mathsf{Oscar}_\mathsf{award}, \mathsf{won}^{-1})\} \end{split}$$

Parameter optimization

- Model parameters:
 - Entity vectors *v*_e
 - Relation type vectors v_r
 - $\alpha = \{ \alpha_e | e \in \mathcal{E} \}$: entity-specific weights
 - $\beta = \{\beta_{r,r'} | r, r' \in \mathcal{R} \cup \mathcal{R}^{-1}\}$: relation-specific weights
- Minimize the L₂-regularized margin-based objective function:

$$egin{aligned} \mathcal{L} &= \sum_{\substack{(h,r,t)\in\mathcal{G}\(h',r,t')\in\mathcal{G}_{(h,r,t)}}} [\gamma+f(h,r,t)-f(h',r,t')]_+ + rac{\lambda}{2} \Big(\|oldsymbollpha\|_2^2+\|oldsymboleta\|_2^2\Big) \ \mathcal{G}_{(h,r,t)}' &= \{(h',r,t)\mid h'\in\mathcal{E},(h',r,t)\notin\mathcal{G}\} \ &\cup \{(h,r,t')\mid t'\in\mathcal{E},(h,r,t')\notin\mathcal{G}\} \end{aligned}$$

- $[x]_+ = \max(0, x)$
- \blacktriangleright $\gamma:$ the margin hyper-parameter
- λ : the L_2 regularization parameter
- ▶ Impose constraints during training with RMSProp: $\|\mathbf{v}_e\|_2 \leq 1$, $\|\mathbf{v}_r\|_2 \leq 1$

Related work

Model	Score function $f(h, r, t)$
STransE	$\ \mathbf{W}_{r,1}\mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_{r,2}\mathbf{v}_t\ _{\ell_{1/2}}; \mathbf{W}_{r,1}, \mathbf{W}_{r,2} \in \mathbb{R}^{k \times k}; \mathbf{v}_r \in \mathbb{R}^k$
TransE	$\ oldsymbol{v}_h+oldsymbol{v}_r-oldsymbol{v}_t\ _{\ell_{1/2}}$; $oldsymbol{v}_r\in\mathbb{R}^k$
TransH	$\ (\mathbf{I}-\boldsymbol{r}_{\rho}\boldsymbol{r}_{\rho}^{\top})\boldsymbol{v}_{h}+\boldsymbol{v}_{r}-(\mathbf{I}-\boldsymbol{r}_{\rho}\boldsymbol{r}_{\rho}^{\top})\boldsymbol{v}_{t}\ _{\ell_{1/2}}$
	$m{r}_{m{p}},m{v}_{m{r}}\in\mathbb{R}^{k}$; I: Identity matrix size $k imes k$
TransD	$\ (\mathbf{I}+\boldsymbol{r}_p\boldsymbol{h}_p^{\top})\boldsymbol{v}_h+\boldsymbol{v}_r-(\mathbf{I}+\boldsymbol{r}_p\boldsymbol{t}_p^{\top})\boldsymbol{v}_t\ _{\ell_{1/2}}$
	$m{r}_{m{p}},m{v}_{m{r}}\in\mathbb{R}^n$; $m{h}_{m{p}},m{t}_{m{p}}\in\mathbb{R}^k$; I: Identity matrix size $n imes k$
TransR	$\ \mathbf{W}_r \mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_r \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{W}_r \in \mathbb{R}^{n imes k}$; $\mathbf{v}_r \in \mathbb{R}^n$
	$\mathbf{v}_r^{ op} tanh(\mathbf{v}_h^{ op} \mathbf{M}_r \mathbf{v}_t + \mathbf{W}_{r,1} \mathbf{v}_h + \mathbf{W}_{r,2} \mathbf{v}_t + \mathbf{b}_r)$
	$\mathbf{v}_r, \mathbf{b}_r \in \mathbb{R}^n; \mathbf{M}_r \in \mathbb{R}^{k imes k imes n}; \mathbf{W}_{r,1}, \mathbf{W}_{r,2} \in \mathbb{R}^{n imes k}$
DISTMULT	$oldsymbol{ u}_h^ opoldsymbol{W}_roldsymbol{v}_t$; $oldsymbol{W}_r$ is a diagonal matrix $\in \mathbb{R}^{k imes k}$
Bilinear-COMP	$\mathbf{v}_h^{ op} \mathbf{W}_{r_1} \mathbf{W}_{r_2} \mathbf{W}_{r_m} \mathbf{v}_t$; $\mathbf{W}_{r_1}, \mathbf{W}_{r_2},, \mathbf{W}_{r_m} \in \mathbb{R}^{k imes k}$
$TransE\text{-}\mathrm{COMP}$	$\ \boldsymbol{v}_{h} + \boldsymbol{v}_{r_{1}} + \boldsymbol{v}_{r_{2}} + + \boldsymbol{v}_{r_{m}} - \boldsymbol{v}_{t}\ _{\ell_{1/2}}; \boldsymbol{v}_{r_{1}}, \boldsymbol{v}_{r_{2}},, \boldsymbol{v}_{r_{m}} \in \mathbb{R}^{k}$
TransE-NMM	$\ \boldsymbol{\vartheta}_{h,r}+\boldsymbol{v}_r-\boldsymbol{\vartheta}_{t,r^{-1}}\ _{\ell_{1/2}}$

2 Improving topic models with word embeddings

- Introduction
- Our neighborhood mixture model
- Experimental evaluation
- Summary

Evaluation: experimental setup

Dataset:	WN11	FB13	NELL186
#R	11	13	186
#E	38,696	75,043	14,463
#Train	112,581	316,232	31,134
#Valid	2,609	5,908	5,000
#Test	10,544	23,733	5,000

- #E: number of entities
- #R: number of relation types
- #Train, #Valid and #Test are the numbers of correct triples in the training, validation, and test sets, respectively
- Each validation and test set also contains the same number of incorrect triples as the number of correct triples

Triple classification task:

- Predict whether a triple (*h*, *r*, *t*) is correct or not
- Set a relation-specific threshold θ_r for each relation type r
- For an unseen test triple (h, r, t), if f(h, r, t) is smaller than θ_r then the triple will be classified as correct, otherwise incorrect
- The relation-specific thresholds are determined by maximizing the micro-averaged accuracy on the validation set

- Entity prediction task:
 - Predict h given (?, r, t) or predict t given (h, r, ?) where ? denotes the missing element
 - ► Corrupt each correct test triple (h, r, t) by replacing either h or t by each of the possible entities in turn
 - Rank these candidates in ascending order of their implausibility value computed by the score function
 - "Raw" and "Filtered" setting protocols in which "Filtered" setting is to filter out before ranking any corrupted triples that appear in the KB
 - Metrics: mean rank (MR), mean reciprocal rank (MRR) and Hits@10 (H10)
- Relation prediction task:
 - Predict r given (h,?,t) where ? denotes the missing element
 - ► Corrupt each correct test triple (h, r, t) by replacing r by each of the possible relations in turn

Evaluation: quantitative results

Data	Data Mothod		Triple class.		Entity prediction			Relation prediction		
Data		Methou	Mic.	Mac.	MR	MRR	H@10	MR	MRR	H@10
	D	TransE	85.21	82.53	4324	0.102	19.21	2.37	0.679	99.93
\A/N111		TransE-NMM	86.82	84.37	3466	0.123	20.59	2.14	0.687	99.92
VVINII	F	TransE			4304	0.122	21.86	2.37	0.679	99.93
		TransE-NMM			3447	0.137	23.03	2.14	0.687	99.92
	D	TransE	87.57	86.66	9037	0.204	35.39	1.01	0.996	99.99
EB13		TransE-NMM	88.58	87.99	8289	0.258	35.53	1.01	0.996	100.0
TDIJ		TransE			5600	0.213	36.28	1.01	0.996	99.99
	1	TransE-NMM			5018	0.267	36.36	1.01	0.996	100.0
	D	TransE	92.13	88.96	309	0.192	36.55	8.43	0.580	77.18
	TransE-NMM	94.57	90.95	238	0.221	37.55	6.15	0.677	82.16	
INELLIOU	F	TransE			279	0.268	47.13	8.32	0.602	77.26
		TransE-NMM			214	0.292	47.82	6.08	0.690	82.20

- Mic.: Micro-averaged accuracy; Mac.: Macro-averaged accuracy
- "R" and "F" denote the "Raw" and "Filtered" settings used in the entity prediction and relation prediction tasks, respectively
- Better results are in **bold**

Evaluation: quantitative results

Method	W11	F13
TransR	85.9	82.5
CTransR	85.7	-
TransD	<u>86.4</u>	89.1
TranSparse-S	<u>86.4</u>	88.2
TranSparse-US	86.8	87.5
NTN	70.6	87.2
TransH	78.8	83.3
SLogAn	75.3	85.3
KG2E	85.4	85.3
Bilinear-COMP	77.6	86.1
$TransE\text{-}\mathrm{COMP}$	80.3	87.6
TransE	85.2	87.6
TransE-NMM	86.8	88.6

Results on the NELL186 test set:

Mothod	Triple	class.	Entity pred.		
Method	Mic. Mac.		MR	H@10	
TransE-LLE	90.08	84.50	535	20.02	
SME-LLE	93.64	89.39	<u>253</u>	37.14	
SE-LLE	<u>93.95</u>	88.54	447	31.55	
TransE-SkipG	85.33	80.06	385	30.52	
SME-SkipG	92.86	<u>89.65</u>	293	39.70	
SE-SkipG	93.07	87.98	412	31.12	
TransE	92.13	88.96	309	36.55	
TransE-NMM	94.57	90.95	238	<u>37.55</u>	

The entity prediction results are in the "Raw" setting

Micro-averaged accuracy for triple classification on WN11 and FB13

Evaluation: qualitative results

- Take the relation-specific mixture weights from the learned TransE-NMM
- Extract neighbor relations with the largest mixture weights given a relation

Relation	Top 3-neighbor relations
has instance	type_of
lias_liistalice	subordinate_instance_of
(WN11)	domain_topic
nationality	place_of_birth
nationality	place_of_death
(FB13)	location
CEOof	WorksFor
CEOOI	TopMemberOfOrganization
(NELL186)	PersonLeadsOrganization

2 Improving topic models with word embeddings

- Introduction
- Our neighborhood mixture model
- Experimental evaluation
- Summary

- We introduced a neighborhood mixture model for knowledge base completion by constructing neighbor-based vector representations for entities
- We demonstrated its effect by extending the state-of-the-art embedding model TransE with our neighborhood mixture model
- Our model significantly improves TransE and obtains better results than the other state-of-the-art embedding models on three evaluation tasks
- We plan to apply the neighborhood mixture model to the relation path models to combine the useful information from both relation paths and entity neighborhoods

Thank you for your attention!