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General introduction

Use vector representations for improving topic models as well as for improving
link prediction in knowledge bases (i.e. knowledge base completion)

• Incorporate word embeddings trained on large external corpora to improve
topic modeling on smaller datasets

Nguyen et al. “Improving Topic Models with Latent Feature Word Representa-

tions.” Transactions of ACL, 2015, vol. 3, pp. 299-313.

• Predict the missing relationships between entities in knowledge bases

Nguyen et al. “Neighborhood Mixture Model for Knowledge Base Completion.”
In Proceedings of CoNLL 2016, pp. 40-50.

Nguyen et al. “STransE: a novel embedding model of entities and relationships
in knowledge bases.” In Proceedings of NAACL-HLT 2016, pp. 460-466.
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Introduction

• Topic models take a corpus of documents as input, and

I Learn a set of latent topics for the corpus

I Infer document-to-topic and topic-to-word distributions from
co-occurrence of words within documents

• If the corpus is small and/or the documents are short, the topics will be
noisy due to the limited information of word co-occurrence

• Latent word representations learnt from large external corpora capture
various aspects of word meanings

I We used the pre-trained Word2Vec (Mikolov et al., 2013) and Glove
(Pennington et al., 2014) word representations
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High-level idea

• Use the word representations learnt on a large external corpus to improve
the topic-word distributions in a topic model

I Combine Latent Dirichlet Allocation (Blei et al., 2003) and Dirichlet
Multinomial Mixture (Nigam et al., 2000) with the word representations

I Improvement is greatest on small corpora with short documents
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LDA and DMM

• Latent Dirichlet Allocation (LDA)

θd ∼ Dir(α) zdi ∼ Cat(θd)
φz ∼ Dir(β) wdi ∼ Cat(φzdi

)

• Dirichlet Multinomial Mixture (DMM) model: one-topic-per-document

θ ∼ Dir(α) zd ∼ Cat(θ)
φz ∼ Dir(β) wdi ∼ Cat(φzd )

• Inference is typically performed with a Gibbs sampler, integrating out θ
and φ (Griffiths et al., 2004; Yin and Wang, 2014)
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Latent-feature topic-to-word distributions

• We assume that each word w is associated with a word vector ωw

• We learn a topic vector τ t for each topic t

• We use these to define a latent feature topic-to-word distribution CatE(w)
over words:

CatE(w | τ tω
>) ∝ exp(τ t · ωw )

I τ tω
> is a vector of unnormalized scores, one per word

• In our topic models, we mix the CatE distribution with a multinomial
distribution over words

I Combine information from a large, general corpus (via the CatE
distribution) and a smaller but more specific corpus (via the multinomial
distribution)

I Use a Boolean indicator variable that records whether a word is generated
from CatE or the multinomial distribution
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The Latent Feature LDA (LF-LDA) model

θd ∼ Dir(α) zdi ∼ Cat(θd)
φz ∼ Dir(β) sdi ∼ Ber(λ)
wdi ∼ (1− sdi )Cat(φzdi

) + sdi CatE(τ zdi
ω>)

• Replace the topic-to-word Dirichlet multinomial component in LDA with
a two-component mixture of a topic-to-word Dirichlet multinomial com-
ponent and a latent feature topic-to-word component

• sdi is the Boolean indicator variable indicating whether word wdi is gen-
erated from the latent feature component

• λ is a user-specified hyper-parameter determining how often words are
generated from the latent feature component

I If we estimated λ from data, we expect it would never generate through
the latent feature component
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The Latent Feature DMM (LF-DMM) model

θ ∼ Dir(α) zd ∼ Cat(θ)
φz ∼ Dir(β) sdi ∼ Ber(λ)
wdi ∼ (1− sdi )Cat(φzd ) + sdi CatE(τ zd ω

>)

• Replace the topic-to-word Dirichlet multinomial component in DMM with
a two-component mixture of a topic-to-word Dirichlet multinomial com-
ponent and a latent feature topic-to-word component

• sdi is the Boolean indicator variable indicating whether word wdi is gen-
erated from the latent feature component

• λ is a user-specified hyper-parameter determining how often words are
generated from the latent feature component
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Inference for the LF-LDA model

• We integrate out θ and φ as in the Griffiths et al. (2004) sampler, and
interleave MAP estimation for τ with Gibbs sweeps for the other variables

• Algorithm outline:

initialize the word-topic variables zdi using the LDA sampler
repeat:

for each topic t:
use LBFGS to optimize the L2-regularized log-loss
τ t = arg maxτ t

P(τ t | z, s)
for each document d and each word location i :

sample zdi from P(zdi | z¬di , s¬di , τ )
sample sdi from P(sdi | z, s¬di , τ )
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Inference for the LF-DMM model

• We integrate out θ and φ as in the Yin and Wang (2014) sampler, and
interleave MAP estimation for τ with Gibbs sweeps

• Algorithm outline:

initialize the word-topic variables zdi using the DMM sampler
repeat:

for each topic t:
use LBFGS to optimize the L2-regularized log-loss
τ t = arg maxτ t

P(τ t | z, s)
for each document d :

sample zd and sd from P(zd , sd | z¬d , s¬d , τ )
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Goals of evaluation

• A topic model learns document-topic and topic-word distributions:
I Topic coherence evaluates the topic-word distributions
I Document clustering and document classification evaluate the

document-topic distribution

• Do the Word2Vec and Glove word vectors behave differently in topic
modelling? (w2v-LDA, glove-LDA, w2v-DMM, glove-DMM)

• We expect that the latent feature component will have the greatest impact
on small corpora, so our evaluation focuses on them:

Dataset # labels # docs words/doc # types
N20 20 newsgroups 20 18,820 103.3 19,572
N20short ≤ 20 words 20 1,794 13.6 6,377
N20small 400 docs 20 400 88.0 8,157
TMN TagMyNews 7 32,597 18.3 13,428
TMNtitle TagMyNews titles 7 32,503 4.9 6,347
Twitter 4 2,520 5.0 1,390
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Topic coherence evaluation

• Lau et al. (2014) showed that human scores on a word intrusion task
are highly correlated with the normalized pointwise mutual information
(NPMI)

• We found latent feature vectors produced a significant improvement of
NPMI scores on all models and corpora

I Greatest improvement when λ = 1 (unsurprisingly)

20 topics 40 topics

NPMI scores on the N20short dataset, varying the mixture weight λ from 0.0
to 1.0.
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w2v-DMM on TagMyNews titles corpus

Topic 1 Topic 3 Topic 4

DMM w2v-DMM DMM w2v-DMM DMM w2v-DMM

japan japan u.s. prices egypt libya
nuclear nuclear oil sales china egypt
u.s. u.s. japan oil u.s iran
crisis plant prices u.s. mubarak mideast
plant quake stocks profit bin opposition
china radiation sales stocks libya protests
libya earthquake profit japan laden leader
radiation tsunami fed rise france syria
u.n. nuke rise gas bahrain u.n.
vote crisis growth growth air tunisia
korea disaster wall shares report chief
europe power street price rights protesters
government oil china profits court mubarak

election japanese fall rises u.n. crackdown
deal plants shares earnings war bahrain

• Table shows the 15 most probable topical words found by 20-topic
w2v-DMM on the TMNtitle corpus

• Words found by DMM but not by w2v-DMM are underlined

• Words found by w2v-DMM but not DMM are in bold

19 / 48



Document clustering evaluation (1)

• Cluster documents by assigning them to the highest probability topic

• Evaluate clusterings by purity and normalized mutual information (NMI)

20 topics 40 topics

Purity and NMI results on the N20short dataset, varying the mixture weight
λ from 0.0 to 1.0.

• In general, best results with λ = 0.6
⇒ Set λ = 0.6 in all further experiments
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Document clustering evaluation (2)

Data Method
Purity NMI

T=4 T=20 T=4 T=20

LDA 0.559 ± 0.020 0.614 ± 0.016 0.196 ± 0.018 0.174 ± 0.008
Twitter w2v-LDA 0.598 ± 0.023 0.635 ± 0.016 0.249 ± 0.021 0.191 ± 0.011

glove-LDA 0.597 ± 0.016 0.635 ± 0.014 0.242 ± 0.013 0.191 ± 0.007
Improve. 0.039 0.021 0.053 0.017
DMM 0.523 ± 0.011 0.619 ± 0.015 0.222 ± 0.013 0.213 ± 0.011

Twitter w2v-DMM 0.589 ± 0.017 0.655 ± 0.015 0.243 ± 0.014 0.215 ± 0.009
glove-DMM 0.583 ± 0.023 0.661 ± 0.019 0.250 ± 0.020 0.223 ± 0.014
Improve. 0.066 0.042 0.028 0.01

• On the short, our models obtain better clustering results than the baseline
models:

I on N20small, we get 6.0% improvement on NMI at T = 6

I on TMN and TMNtitle, we obtain 6.1% and 2.5% higher Purity at
T = 80
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Document clustering evaluation (3)

• For small T ≤ 7, on the large datasets of N20, TMN and TMNtitle, our
models and baseline models obtain similar clustering results

• With larger T , our models perform better than baselines on the short
TMN and TMNtitle datasets. On the N20 dataset, the baseline LDA
model obtains slightly higher clustering results than ours

• No reliable difference between Word2Vec and Glove vectors
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Document classification (1)

• Use SVM to predict the ground truth label from the topic-proportion
vector of each document

20 topics 40 topics

F1 scores on N20short dataset, varying the mixture weight λ from 0.0 to 1.0.

Data Method
λ = 0.6

T=6 T=20 T=40 T=80

LDA 0.204 ± 0.020 0.392 ± 0.029 0.459 ± 0.030 0.477 ± 0.025
N20small w2v-LDA 0.213 ± 0.018 0.442 ± 0.025 0.502 ± 0.031 0.509 ± 0.022

glove-LDA 0.181 ± 0.011 0.420 ± 0.025 0.474 ± 0.029 0.498 ± 0.012
Improve. 0.009 0.05 0.043 0.032
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Document classification (2)

Data Method
λ = 0.6

T=7 T=20 T=40 T=80

DMM 0.607 ± 0.040 0.694 ± 0.026 0.712 ± 0.014 0.721 ± 0.008
TMN w2v-DMM 0.607 ± 0.019 0.736 ± 0.025 0.760 ± 0.011 0.771 ± 0.005

glove-DMM 0.621 ± 0.042 0.750 ± 0.011 0.759 ± 0.006 0.775 ± 0.006
Improve. 0.014 0.056 0.048 0.054
DMM 0.500 ± 0.021 0.600 ± 0.015 0.630 ± 0.016 0.652 ± 0.005

TMNtitle w2v-DMM 0.528 ± 0.028 0.663 ± 0.008 0.682 ± 0.008 0.681 ± 0.006
glove-DMM 0.565 ± 0.022 0.680 ± 0.011 0.684 ± 0.009 0.681 ± 0.004
Improve. 0.065 0.08 0.054 0.029

Data Method
λ = 0.6

T=4 T=20 T=40 T=80

LDA 0.526 ± 0.021 0.636 ± 0.011 0.650 ± 0.014 0.653 ± 0.008
Twitter w2v-LDA 0.578 ± 0.047 0.651 ± 0.015 0.661 ± 0.011 0.664 ± 0.010

glove-LDA 0.569 ± 0.037 0.656 ± 0.011 0.662 ± 0.008 0.662 ± 0.006
Improve. 0.052 0.02 0.012 0.011
DMM 0.469 ± 0.014 0.600 ± 0.021 0.645 ± 0.009 0.665 ± 0.014

Twitter w2v-DMM 0.539 ± 0.016 0.649 ± 0.016 0.656 ± 0.007 0.676 ± 0.012
glove-DMM 0.536 ± 0.027 0.654 ± 0.019 0.657 ± 0.008 0.680 ± 0.009
Improve. 0.07 0.054 0.012 0.015
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Conclusions and future directions

• Latent feature vectors induced from large external corpora can be used
to improve topic modeling

I Latent features significantly improve topic coherence across a range of
corpora with both the LDA and DMM models

I Document clustering and document classification also significantly
improve, even though these depend directly only on the document-topic
distribution

• The improvements were greatest for small document collections and/or
for short documents

• We did not detect any reliable difference between Word2Vec and Glove
vectors

• Retrain the word vectors to fit the topic-modeling corpus

• More sophisticated latent-feature models of topic-word distributions

• More efficient training procedures

26 / 48



Outline

1 General introduction

2 Improving topic models with word embeddings
Introduction
Latent-feature topic models
Experimental evaluation
Summary

3 A new embedding model for knowledge base completion
Introduction
Our neighborhood mixture model
Experimental evaluation
Summary

27 / 48



Outline

1 General introduction

2 Improving topic models with word embeddings

3 A new embedding model for knowledge base completion
Introduction
Our neighborhood mixture model
Experimental evaluation
Summary

28 / 48



Introduction

• Knowledge bases (KBs) of real-world triple
facts (head entity, relation, tail entity) are
useful resources for NLP tasks

• Issue: large KBs are still far from complete

• So it is useful to perform link prediction in
KBs or knowledge base completion (KBC):
predict which triples not in a knowledge base
are likely to be true

Figure extracted from “Jason Weston and
Antoine Bordes. 2014. Embedding Meth-
ods for NLP. EMNLP 2014 tutorial.”
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Introduction

• Embedding models for KBC:

I Associate entities and/or relations with dense feature vectors or matrices
I Obtain SOTA performance and generalize to large KBs

• Most embedding models for KBC learn only from triples

• Recent works show that the relation paths between entities in KBs provide
useful information and improve KBC

(Harrison Ford,born in hospital/r1, Swedish Covenant Hospital)

⇒(Swedish Covenant Hospital, located in city/r2,Chicago)

⇒(Chicago, city in country/r3,United States)

Relation path p = {r1, r2, r3} is useful for predicting the relationship
“nationality” between the head and tail entities
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Introduction

• Our motivation: neighborhoods could provide lots of useful information
for predicting the relationship between the entities

Ben Affleck

= ωr ,1(Violet Anne, child of)

+ ωr ,2(male, gender−1)

+ ωr ,3(Los Angeles, live in−1)

+ ωr ,4(Oscar award,won−1)

Ben Affleck

male

gender

actor

occupation?

film maker

occupation?

Oscar award

won

Los Angeles

live in

lecturer

occupation?

Violet Anne

child of
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Our neighbor-based entity representation

E = {Ben Affleck, Los Angeles, ...}
R = {live in,won, child of, gender, ...}
G = {(Violet Anne, child of,Ben Affleck),

(Ben Affleck,won,Oscar award),

(Ben Affleck, live in, Los Angeles), ...}

Ne is the set of all entity and relation pairs

that are neighbors for entity e

NBen Affleck = {(Violet Anne, child of),

(male, gender−1),

(Los Angeles, live in−1),

(Oscar award,won−1)}

Ben Affleck

male

gender

actor

occupation?

film maker

occupation?

Oscar award

won

Los Angeles

live in

lecturer

occupation?

Violet Anne

child of
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Our neighbor-based entity representation

• v e ∈ Rk : k-dimensional “base” vector associated with entity e

• ue,r ∈ Rk : relation-specific entity vector, e ∈ E , r ∈ R ∪R−1

• The neighborhood-based entity representation ϑe,r for an entity e for
predicting the relation r is defined as follows:

ϑe,r = aev e +
∑

(e′,r ′)∈Ne

br ,r ′ue′,r ′ (1)

ae and br ,r ′ are the mixture weights that are constrained to sum to 1:

ae ∝ δ + expαe (2)

br ,r ′ ∝ expβr ,r ′ (3)

δ > 0: hyper-parameter
αe , βr ,r ′ : learnable exponential mixture parameters
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Our neighbor-based entity representation

ϑe,r = aev e +
∑

(e′,r ′)∈Ne

br ,r ′ue′,r ′

e = Ben Affleck

r = occupation

Ne = {(Violet Anne, child of),

(male, gender−1),

(Los Angeles, live in−1),

(Oscar award,won−1)}

Ben Affleck

male

gender

actor

occupation?

film maker

occupation?

Oscar award

won

Los Angeles

live in

lecturer

occupation?

Violet Anne

child of
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Our new embedding model TransE-NMM for KBC

• Embedding models define for each triple (h, r , t) ∈ G, a score function
f (h, r , t) that measures its implausibility

• Goal: choose f such that the score f (h, r , t) of a plausible triple (h, r , t)
is smaller than the score f (h′, r ′, t ′) of an implausible triple (h′, r ′, t ′).

• Entity e and relation r are represented with vectors v e ∈ Rk and v r ∈ Rk

f (h, r , t)TransE = ‖vh + v r − v t‖`1/2

• The score function of our new model TransE-NMM is defined as follows:

f (h, r , t) = ‖ϑh,r + v r − ϑt,r−1‖`1/2
(4)

ϑe,r = aev e +
∑

(e′,r ′)∈Ne

br ,r ′ue′,r ′

ue,r = v e + v r (5)

v r−1 = −v r (6)
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Our new embedding model TransE-NMM for KBC

ϑe,r = aev e +
∑

(e′,r ′)∈Ne

br ,r ′
(
v e′ + v r ′

)

e = Ben Affleck

r = occupation

Ne = {(Violet Anne, child of),

(male, gender−1),

(Los Angeles, live in−1),

(Oscar award,won−1)}

Ben Affleck

male

gender

actor

occupation?

film maker

occupation?

Oscar award

won

Los Angeles

live in

lecturer

occupation?

Violet Anne

child of
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Parameter optimization

• Model parameters:
I Entity vectors v e

I Relation type vectors v r

I α = {αe |e ∈ E}: entity-specific weights
I β = {βr ,r ′ |r , r ′ ∈ R ∪R−1}: relation-specific weights

• Minimize the L2-regularized margin-based objective function:

L =
∑

(h,r ,t)∈G
(h′,r ,t′)∈G′

(h,r,t)

[γ + f (h, r , t)− f (h′, r , t ′)]+ +
λ

2

(
‖α‖2

2 + ‖β‖2
2

)

G′(h,r ,t) = {(h′, r , t) | h′ ∈ E , (h′, r , t) /∈ G}

∪ {(h, r , t ′) | t ′ ∈ E , (h, r , t ′) /∈ G}
I [x ]+ = max(0, x)
I γ: the margin hyper-parameter
I λ: the L2 regularization parameter
I Impose constraints during training with RMSProp: ‖v e‖2 6 1, ‖v r‖2 6 1
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Related work

Model Score function f (h, r , t)

STransE ‖Wr ,1vh + v r −Wr ,2v t‖`1/2
; Wr ,1, Wr ,2 ∈ Rk×k ; v r ∈ Rk

TransE ‖vh + v r − v t‖`1/2
; v r ∈ Rk

TransH
‖(I− rpr>p )vh + v r − (I− rpr>p )v t‖`1/2

rp, v r ∈ Rk ; I: Identity matrix size k × k

TransD
‖(I + rph>p )vh + v r − (I + rpt>p )v t‖`1/2

rp, v r ∈ Rn ; hp, tp ∈ Rk ; I: Identity matrix size n × k

TransR ‖Wrvh + v r −Wrv t‖`1/2
; Wr ∈ Rn×k ; v r ∈ Rn

NTN
v>r tanh(v>h Mrv t + Wr ,1vh + Wr ,2v t + br )

v r , br ∈ Rn; Mr ∈ Rk×k×n; Wr ,1, Wr ,2 ∈ Rn×k

DISTMULT v>h Wrv t ; Wr is a diagonal matrix ∈ Rk×k

Bilinear-comp v>h Wr1Wr2 ...Wrmv t ; Wr1 ,Wr2 , ...,Wrm ∈ Rk×k

TransE-comp ‖vh + v r1 + v r2 + ...+ v rm − v t‖`1/2
; v r1 , v r2 , ..., v rm ∈ Rk

TransE-NMM ‖ϑh,r + v r − ϑt,r−1‖`1/2
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Evaluation: experimental setup

Dataset: WN11 FB13 NELL186

#R 11 13 186
#E 38,696 75,043 14,463
#Train 112,581 316,232 31,134
#Valid 2,609 5,908 5,000
#Test 10,544 23,733 5,000

• #E: number of entities

• #R: number of relation types

• #Train, #Valid and #Test are the
numbers of correct triples in the
training, validation, and test sets,
respectively

• Each validation and test set also
contains the same number of in-
correct triples as the number of
correct triples

Triple classification task:

• Predict whether a triple
(h, r , t) is correct or not

• Set a relation-specific thresh-
old θr for each relation type r

• For an unseen test triple
(h, r , t), if f (h, r , t) is smaller
than θr then the triple will be
classified as correct, otherwise
incorrect

• The relation-specific thresh-
olds are determined by maxi-
mizing the micro-averaged ac-
curacy on the validation set
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Evaluation: experimental setup

• Entity prediction task:

I Predict h given (?, r , t) or predict t given (h, r , ?) where ? denotes the
missing element

I Corrupt each correct test triple (h, r , t) by replacing either h or t by each
of the possible entities in turn

I Rank these candidates in ascending order of their implausibility value com-
puted by the score function

I “Raw” and “Filtered” setting protocols in which “Filtered” setting is to
filter out before ranking any corrupted triples that appear in the KB

I Metrics: mean rank (MR), mean reciprocal rank (MRR) and Hits@10 (H10)

• Relation prediction task:

I Predict r given (h, ?, t) where ? denotes the missing element

I Corrupt each correct test triple (h, r , t) by replacing r by each of the possible
relations in turn
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Evaluation: quantitative results

Data Method
Triple class. Entity prediction Relation prediction

Mic. Mac. MR MRR H@10 MR MRR H@10

WN11

R
TransE 85.21 82.53 4324 0.102 19.21 2.37 0.679 99.93

TransE-NMM 86.82 84.37 3466 0.123 20.59 2.14 0.687 99.92

F
TransE 4304 0.122 21.86 2.37 0.679 99.93

TransE-NMM 3447 0.137 23.03 2.14 0.687 99.92

FB13

R
TransE 87.57 86.66 9037 0.204 35.39 1.01 0.996 99.99

TransE-NMM 88.58 87.99 8289 0.258 35.53 1.01 0.996 100.0

F
TransE 5600 0.213 36.28 1.01 0.996 99.99

TransE-NMM 5018 0.267 36.36 1.01 0.996 100.0

NELL186

R
TransE 92.13 88.96 309 0.192 36.55 8.43 0.580 77.18

TransE-NMM 94.57 90.95 238 0.221 37.55 6.15 0.677 82.16

F
TransE 279 0.268 47.13 8.32 0.602 77.26

TransE-NMM 214 0.292 47.82 6.08 0.690 82.20

• Mic.: Micro-averaged accuracy; Mac.: Macro-averaged accuracy
• “R” and “F” denote the “Raw” and “Filtered” settings used in the entity

prediction and relation prediction tasks, respectively
• Better results are in bold
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Evaluation: quantitative results

Method W11 F13

TransR 85.9 82.5

CTransR 85.7 -

TransD 86.4 89.1

TranSparse-S 86.4 88.2

TranSparse-US 86.8 87.5

NTN 70.6 87.2

TransH 78.8 83.3

SLogAn 75.3 85.3

KG2E 85.4 85.3

Bilinear-comp 77.6 86.1

TransE-comp 80.3 87.6

TransE 85.2 87.6

TransE-NMM 86.8 88.6

Micro-averaged accuracy for triple
classification on WN11 and FB13

Results on the NELL186 test set:

Method
Triple class. Entity pred.

Mic. Mac. MR H@10

TransE-LLE 90.08 84.50 535 20.02

SME-LLE 93.64 89.39 253 37.14

SE-LLE 93.95 88.54 447 31.55

TransE-SkipG 85.33 80.06 385 30.52

SME-SkipG 92.86 89.65 293 39.70

SE-SkipG 93.07 87.98 412 31.12

TransE 92.13 88.96 309 36.55

TransE-NMM 94.57 90.95 238 37.55

The entity prediction results are in the
“Raw” setting
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Evaluation: qualitative results

• Take the relation-specific mixture weights from the learned TransE-NMM

• Extract neighbor relations with the largest mixture weights given a relation

Relation Top 3-neighbor relations

has instance
type of
subordinate instance of

(WN11) domain topic

nationality
place of birth
place of death

(FB13) location

CEOof
WorksFor
TopMemberOfOrganization

(NELL186) PersonLeadsOrganization
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Conclusions and future work

• We introduced a neighborhood mixture model for knowledge base com-
pletion by constructing neighbor-based vector representations for entities

• We demonstrated its effect by extending the state-of-the-art embedding
model TransE with our neighborhood mixture model

• Our model significantly improves TransE and obtains better results than
the other state-of-the-art embedding models on three evaluation tasks

• We plan to apply the neighborhood mixture model to the relation path
models to combine the useful information from both relation paths and
entity neighborhoods
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Thank you for your attention!
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