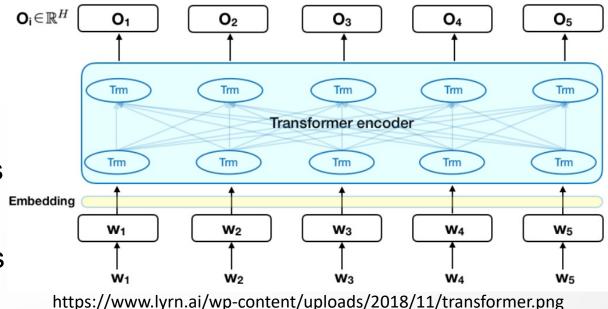
BERTweet: The first Large-scale Pre-trained Language Model for English Tweets

Dat Quoc Nguyen - VinAl Research, Vietnam

Motivation

- Language model BERT—Bidirectional Encoder Representations from Transformers (Devlin et al., 2019)—is a recent breakthrough in NLP
 - BERT and its variants, pretrained on large-scale corpora, help improve the state-of-the-art performances of various NLP research & application tasks
 - Represent words by embedding vectors which encode the contexts where the words appear, i.e. contextualized word embeddings



Motivation

- Tweet data:
 - Widely-used and real-time source of information in various important analytic tasks (Ghani et al., 2019)
 - Typical short length and frequent use of informal grammar as well as irregular vocabulary e.g. abbreviations, typographical errors and hashtags

#mermaid GM peeps #ftlauderdale

Existing language models pre-trained on large-scale conventional text corpora (Wikipedia, news and books) with formal grammar and regular vocabulary

 To the best of our knowledge, there is not an existing language model pre-trained on a large-scale corpus of English Tweets

Pre-training BERTweet

- Pre-training corpus:
 - A large-scale corpus of 850M English Tweets (80GB)
 - Use TweetTokenizer to tokenize raw Tweets and the emoji package to translate emotion icons into text strings
 - Replace user mentions and URLs by tokens "@USER" and "HTTPURL", respectively
 - Segment all Tweets with subword units
- BERTweet pre-training procedure is based on RoBERTa (Liu et. al., 2019) which optimizes BERT for more robust performance
 - Remove the next sentence prediction task
 - Use dynamic masking

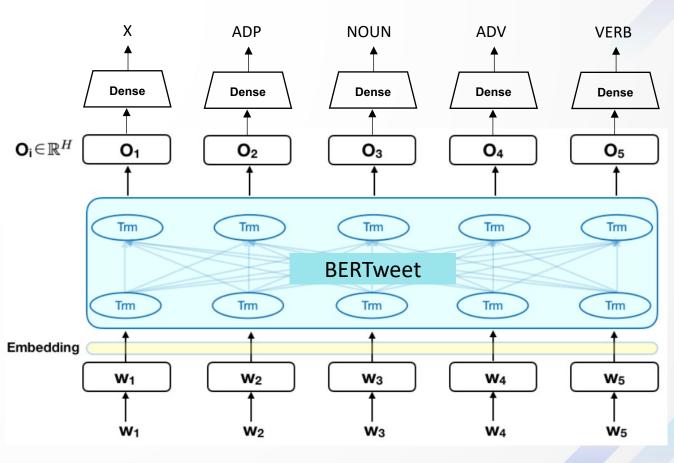
Pre-training BERTweet

- BERTweet-base (135M parameters)
 - Pre-trained using 8 GPUs V100 32GB memory each
 - Released: <u>05/2020</u>
- BERTweet-large (355M parameters)
 - Pre-trained using 8 GPUs A100 40GB memory each*
 - Released: 08/2021
- Publicly released under MIT license: https://github.com/VinAIResearch/BERTweet
- BERTweet can be used with popular open-source libraries: transformers and fairseq

^{*}With FP16 mixed-precision: we find that A100 is 2.5x speedup compared to V100

- Part-of-Speech (POS) tagging: To assign a lexical category tag to each word in a text
 - Use a linear prediction layer on top of the BERTweet architecture

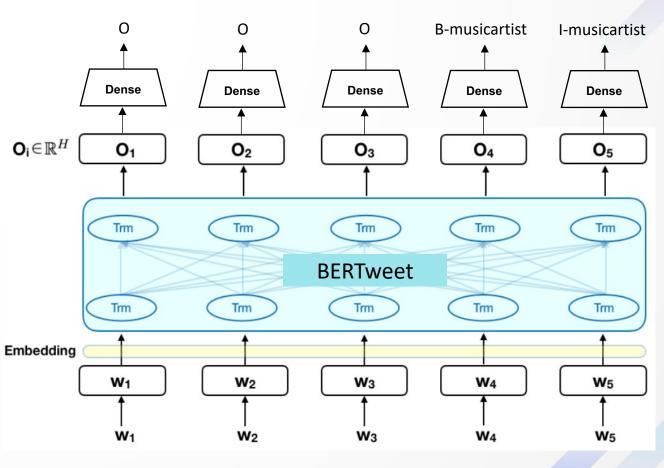
ID	Form	POS tag
1	#openfollow	X
2	for	ADP
3	kpopers	NOUN
4	just	ADV
5	retweet	VERB



Drawn based on https://www.lyrn.ai/wp-content/uploads/2018/11/transformer.png

- Named entity recognition (NER): To identify locations, organizations,...
 - Use a linear prediction layer on top of the BERTweet architecture

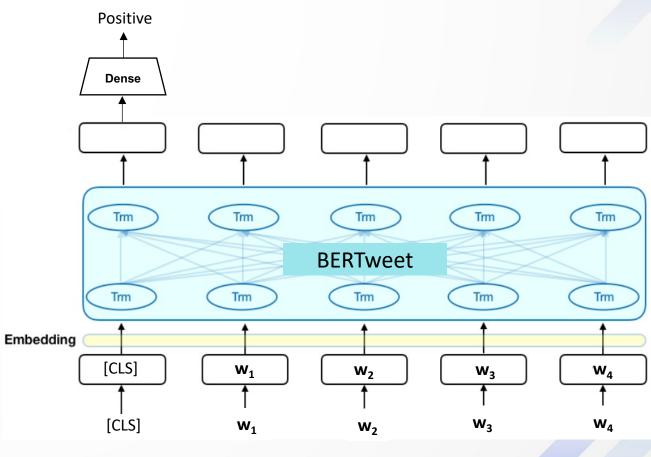
ID	Form	NER tag
1	oldskool	О
2	night	О
3	wiith	0
4	dj	B-musicartist
5	finese	I-musicartist



Drawn based on https://www.lyrn.ai/wp-content/uploads/2018/11/transformer.png

- Text classification: Sentiment analysis (positive, negative or neutral), Irony detection (ironic or not-ironic)
 - Use a linear prediction layer on top of the BERTweet output for the classification token [CLS]—the first token of the input sequence

Tweet	@USER I saw you in Milan, May 9th and it was absolutely incredible
Label	positive



Drawn based on https://www.lyrn.ai/wp-content/uploads/2018/11/transformer.png

- Benchmark datasets:
 - POS tagging: Ritter11-T-POS (Ritter et al., 2011), ARK-Twitter (Gimpelet al., 2011) and Tweebank-v2 (Liu et al., 2018)
 - NER: WNUT16 NER shared task (Strauss et al., 2016) and WNUT17 shared task on novel and emerging entity recognition (Derczynski et al., 2017)
 - Text classification: SemEval2017 sentiment analysis task 4A (Rosenthal et al., 2017) and SemEval2018 irony detection task 3A (Van Hee et al., 2018)
- "soft" normalization strategy
 - Translate word tokens of user mentions and web/url links into the special tokens "@USER" and "HTTPURL"
 - Convert emotion icon tokens into corresponding strings

- Pre-trained language model baselines:
 - RoBERTa: pre-trained on 160GB of texts covering books, Wikipedia, CommonCrawl news, CommonCrawl stories, and web text contents
 - XLM-R: a cross-lingual variant of RoBERTa, pre-trained on a 2.5TB multilingual corpus that contains 300GB of English CommonCrawl texts

 POS tagging accuracy results on the Ritter11-T-POS (Ritter11), ARK-Twitter (ARK) and Tweebank-v2 (TB-v2) test sets

	Model	Ritter11	ARK	TB-v2
	RoBERTa-large	91.7	93.7	94.9
lts	XLM-R-large	92.6	94.2	95.5
esul	BERTweet-large	92.8	95.0	95.8
rr	RoBERTa-base	88.7	91.8	93.7
0	XLM-R-base	90.4	92.8	94.7
	BERTweet-base	90.1	94.1	95.2
D	CNN (Gui et al., 2018) [*]	91.2	92.4	
TF	PANN (Gui et al., 2017) [*]	90.9	92.8	-
Al	RKtagger [*]	90.4	93.2	94.6
Bi	LSTM-CNN-CRF [*]	I,	-	92.5

[*] denotes the use of additional training data

Entity-level F1 scores on the WNUT16 and WNUT17 test sets

	Model	WNUT16	WNUT17
	RoBERTa-large	55.4	56.9
lts	XLM-R-large	55.8	57.1
Our results	BERTweet-large	56.7	59.8
Ir r	RoBERTa-base	49.7	52.2
O	XLM-R-base	49.9	53.5
	BERTweet-base	52.1	56.5
Ca	mbridgeLTL [*]	52.4	
DA	ATNet (Zhou et al.) [*]	53.0	42.3
Ag	guilar et al. (2017)	I	41.9

[*] denotes the use of additional training data

Text classification test results

Model	AvgRec	$\mathbf{F_1}^{NP}$	Accuracy
RoBERTa-large	72.5	72.0	70.7
	71.7	71.1	70.7
XLM-R-large BERTweet-large Roberts-base	73.3	73.1	72.2
RoBERTa-base	71.6	71.2	71.6
ර XLM-R-base	70.3	69.4	69.3
BERTweet-base	73.2	72.8	71.7
Cliche (2017)	68.1	68.5	65.8
Baziotis et al. (2017)	68.1	67.7	65.1

	Model	$\mathbf{F_1}^{\mathbf{pos}}$	Accuracy
	RoBERTa-large	73.2	76.5
lts	XLM-R-large	70.8	74.2
Our results	BERTweet-large	76.3	80.3
Ir r	RoBERTa-base	71.0	74.0
Õ	XLM-R-base	66.6	70.8
	BERTweet-base	74.6	78.2
Wu	et al. (2018)	70.5	73.5
Ba	ziotis et al. (2018)	67.2	73.2

SemEval2017 sentiment analysis task 4A

SemEval2018 irony detection task 3A

- Apply a "hard" strategy by further applying lexical normalization dictionaries (Aramaki, 2010; Liu et al., 2012; Han et al., 2012) to normalize word tokens in Tweets
 - Lexical normalization on Tweets is a lossy translation task (Owoputi et al., 2013)

Model	Ritter11		ARK		TB-V2	
Model	soft	hard	soft	hard	soft	hard
RoBERTa-base	88.7	88.3	91.8	91.6	93.7	93.5
XLM-R-base	90.4	90.3	92.8	92.6	94.7	94.3
BERTweet-base	90.1	89.5	94.1	93.4	95.2	94.7

	WNI	J T16	WNUT17		
Model	soft	hard	soft	hard	
RoBERTa-base	49.7	49.2	52.2	52.0	
XLM-R-base	49.9	49.4	53.5	53.0	
BERTweet-base	52.1	51.3	56.5	55.6	

Model	AvgRec		F_1^{NP}		Accuracy	
Model	soft	hard	soft	hard	soft	hard
RoBERTa-base	71.6	71.8	71.2	71.2	71.6	70.9
XLM-R-base	70.3	70.3	69.4	69.6	69.3	69.7
BERTweet-base	73.2	72.8	72.8	72.5	71.7	72.0

Model	F_1	pos	Accuracy		
Model	soft	hard	soft	hard	
RoBERTa-base	71.0	71.2	74.0	74.0	
XLM-R-base	66.6	66.2	70.8	70.8	
BERTweet-base	74.6	74.3	78.2	78.2	

SemEval2017 sentiment analysis task 4A

SemEval2018 irony detection task 3A 14

Key takeaways

- BERTweet is the first public large-scale monolingual language model pre-trained for English Tweets
- BERTweet produces state-of-the-art performances on 3 downstream Tweet NLP tasks:
 POS tagging, NER, and text classification (i.e. sentiment analysis & irony detection)
 - Outperform its baselines (i.e. RoBERTa and XLM-R) and previous models
 - Effectiveness of a large-scale and domain-specific pre-trained language model for English Tweets
- BERTweet can serve as a strong baseline for future research and applications of Tweet analytic tasks: https://github.com/VinAlResearch/BERTweet

Thanks for your attention!