
A Semantic Approach for Question Analysis

Dai Quoc Nguyen1, Dat Quoc Nguyen1, and Son Bao Pham1,2

1 Faculty of Information Technology
University of Engineering and Technology

Vietnam National University, Hanoi
{dainq, datnq, sonpb}@vnu.edu.vn
2 Information Technology Institute
Vietnam National University, Hanoi

Abstract The first step that a question answering system must per-
form is to transform an input question into an intermediate represen-
tation. All published works so far use rule-based approaches to realize
this transformation in question answering systems. Nevertheless, in ex-
isting rule-based approaches, manually creating the rules is error-prone
and expensive in time and effort. In this paper, we focus on introduc-
ing a rule-based approach that offers an intuitive way to create compact
rules for extracting intermediate representation of input questions. Ex-
perimental results are promising where our system achieves reasonable
performance and demonstrate that it is straightforward to adapt to new
domains and languages.

1 Introduction

The goal of question answering systems is to give answers to the user’s questions
instead of ranked lists of related documents as used by most current search
engines [3]. Natural language question analysis component is the first component
in any question answering systems. This component creates an intermediate
representation of the input question, which is expressed in natural language, to
be utilized in the rest of the system.

For the task of translating a natural language question into an explicit in-
termediate representation of the complexity in question answering systems, all
published works so far use rule-based approach to the best of our knowledge.
Some question answering systems such as Aqualog [5] and VnQAS [7] manually
defined a list of sequence rule structures to analyze questions. However, in these
rule-based approaches, manually creating the rules is error-prone and expensive
in time and effort.

In this paper, we present an approach to return an intermediate representa-
tion of question via FrameScript scripting language [6]. Natural language ques-
tions will be transformed into intermediate representation elements which in-
clude the construction type of question, question class, keywords in question
and semantic constraints between them. Framescript allows users to intuitively
write rules to directly extract the output tuple.

2 Dai Quoc Nguyen, Dat Quoc Nguyen, and Son Bao Pham

In section 2, we provide some related works and describe our overall system
architecture in section 3. We present our approach for question analysis in section
4 and describe our experiments in section 5. Discussion and conclusion will be
presented in section 6.

2 Related works

2.1 Question analysis in question answering systems

Early NLIDB systems used pattern-matching technique to process user’s ques-
tion and generate corresponding answer [1]. A common technique for parsing
input questions in NLIDB approaches is syntax analysis where a natural lan-
guage question is directly mapped to a database query (such as SQL) through
grammar rules.

The PRECISE system [10] maps the natural language question to a unique
semantic interpretation by analyzing some lexicons and semantic constraints. In
[12], the authors described a template-based system to translate English question
into SQL query by matching the syntactic parse of the question to a set of fixed
semantic templates. Some other systems based on semantic grammar rules such
as Planes [14], Eufid [13]. Semantic grammar-based approaches were considered
as an engineering methodology, which allows semantic knowledge to be easily
included in the system.

Recently, some question answering systems that used semantic annotations
generated high results in natural language question analysis. Aqualog [5] and
the first Ontology-based question answering system for Vietnamese [7] perform
semantic and syntactic analysis of the input question based on semantic anno-
tations in the use of JAPE grammar rules in GATE framework [2]. Nguyen et
al. [9] proposed a language independent approach utilizing JAPE grammars to
systematically construct a knowledge base for processing natural language ques-
tions. The difference between these approach and our approach is that we use
FrameScript scripting language [6] to analyze input questions.

2.2 FrameScript Scripting Language

FrameScript [6] is a language for creating a multi-modal user interfaces. It evolves
from Sammut’s Probot [11] to enable rule-based programming, frame represen-
tations and simple function evaluation.

Each script in FrameScript [6] includes a list of rules which will be matched
against user inputs to give the corresponding responses. A scripting rule in the
FrameScript language consists of a pattern and responses with the form:
pattern ==> responses.

A pattern expression allows the use of non-terminals to reuse other pattern
expressions. Response expressions contain two different types namely sequences
and alternatives. A sequence of responses has the form surrounded by brackets:
[response 1 | response 2 | ... | another response] and it is also possible to specify

A Semantic Approach for Question Analysis 3

additional conditions to decide which responses will be selected. Furthermore,
once the pattern is matched, its components are numbered in order starting from
1. These component are segments of the input that can be referred to in a re-
sponse using ‘∧’. When ‘∧’ is followed by an integer, the corresponding numbered
pattern component is used in the output response. In addition, responses utilize
the ‘#’ to perform actions. Many examples using #goto(a_script, <<trigger>>)
to transform from the current script to another one are described in our com-
panion paper [8].

3 Our Question Answering System Architecture

The architecture of our question answering system is shown in Figure 1. It in-
cludes two components: a Natural language question analysis engine and an
Answer retrieval. The question analysis component takes the user question as

Figure 1. Architecture of our question answering system.

an input and returns an intermediate query-tuple representing the question in a
compact form. The role of this intermediate representation is to provide struc-
tured information of the input question for later processing such as retrieving
answers. Similar to VnQAS [7], the answer retrieval component includes two
main modules: Ontology Mapping and Answer Extraction. It takes an inter-

4 Dai Quoc Nguyen, Dat Quoc Nguyen, and Son Bao Pham

mediate representation produced by the question analysis component and an
Ontology as its input to generate semantic answers.

Unlike existing approaches for English [5] and Vietnamese [7] where the inter-
mediate representation couldn’t be extracted directly in rules, we will describe an
approach to directly extract the representation of user’s question using Frame-
Script scripting language [6].

4 Using FrameScript language for question analysis

The natural language analysis component presented in Figure 1 consists of three
modules: preprocessing, syntactic analysis and semantic analysis.

To set the context for the discussion of question analysis, we will first de-
scribe the intermediate representation used in our approach, and then focus on
proposing our approach to obtain this intermediate representation for a given
question.

4.1 Intermediate Representation of an input question

Similar to VnQAS [7], the intermediate representation used in our approach aims
to cover a wider variety of question types. It consists of a question-structure and
one or more query-tuple in the following format:

(question-structure, question-class, Term1, Relation, Term2, Term3)
where Term1 represents a concept (object class), Term2 and Term3, if exist,

represent entities (objects), Relation (property) is a semantic constraint between
terms in the question. This representation is meant to capture the semantics of
the question.

Simple questions corresponding to basic constructions only have one query-
tuple and its question-structure is the query-tuple’s question-structure. More
complex questions such as composite questions are constructed by several sub-
questions, each sub-question is described by a separate question-structure, and
the question-structure capture this composition attribute. This representation is
chosen so that it can represent a richer set of question types. Therefore, some
terms or relation in the query-tuple can be missed. Composite questions such
as:

“list all students in the Faculty of Information Technology whose hometown
is Hanoi?”

has question structure of type And with two query-tuples where ? repre-
sents a missed element: (UnknRel , List , students , ? , Faculty of Information
Technology, ?) and (Normal , List , students, hometown, Hanoi, ?).

4.2 Preprocessing module

The preprocessing module identifies part-of-speech tags in a user’s question. Af-
ter that, we use part-of-speech tags to create basic scripts for detecting words.
The basic scripts Noun, Verb, Determiner, Adjective, Adverb, Conjunction and

A Semantic Approach for Question Analysis 5

Preposition are used to identify corresponding nouns, verbs, determiners, adjec-
tives, adverbs, conjunctions and prepositions. In fact, these scripts will be used
in creating rules in the syntactic and semantic analysis modules at later stages.

Noun ::
{ NN | NNS | NNP | NNPS | NP | NPS | CD } ;;

Verb ::
{ FVG | VBN | VBZ | VBG | VBD | VBP | VB } ;;

Determiner ::
{ DT | PRP } ;;

Adjective ::
{ JJ | JJR | JJS } ;;

Adverb ::
{ RB | RBR | RBS } ;;

Conjunction ::
{ CC } ;;

Preposition ::
{ PREP | TO | IN } ;;

4.3 Syntactic analysis module

This module is responsible for determining noun phrases, question phrases and
relation phrases between noun phrases or noun phrases and question phrases.

Concepts and entities are normally expressed in noun phrases. Therefore,
it is important that we can reliably identify noun phrases in order to generate
the query-tuple. Hence we build the script called NounPhrase (such as a sample
script below) to specify patterns of noun phrases by utilizing scripts generated
from the preprocessing module.

Composite ::
{ <Noun> | <Conjunction> | <Adjective>
| <Adverb> <Adjective> } ;;

NounPhrase ::
{ <Noun> | <Determiner> <Noun>
| <Composite> <Noun>
| <Determiner> <Composite> <Noun> } ;;

For example, given the following question: “which projects are about ontologies
and the semantic web?”, Three noun phrases ‘projects‘”, “ontologies” and “the
semantic web” will be identified.

In addition, we identify the question words, such as HowWhycause | method,
YesNo true or false, Whatsomething , Whentime | date, Wherelocation, Manynumber,
Whoperson, to provide question classes. Accordingly, question phrases are de-
tected by using noun phrases and question words to give information about
question categories. Following VnQAS [7], we define the following question cat-
egories: HowWhy, YesNo, What, When, Where, Who, Many, ManyClass, List
and Entity. This can be achieved by using the scripts such as the following:

6 Dai Quoc Nguyen, Dat Quoc Nguyen, and Son Bao Pham

Entity ::
{ <Wh_determiner> <Noun> } ;;

ManyClass ::
{ <Wh_adverb> <Many> <Noun> } ;;

For example, in the question: “How many persons work on AKT project?”, the
phrase “How many persons” is identified by using the ManyClass script shown
above.

The next step is to identify the relation phrases or semantic constraints be-
tween noun phrases or noun phrases and question phrases. We create a Relation
script shown in the following sample script which is used to match relation
phrases:

Noun_Adj ::
{ NN | NNS | NNP | NNPS | NP | NPS
| CD | PRP | JJ | JJR | JJS } ;;

Relation ::
{ <Verb> | <Verb> <Noun_Adj> <Preposition>
| <Verb> <Adverb> <Noun_Adj> <Preposition>};;

For instance, with the following question: “who are the researchers in seman-
tic web research area?”, the phrase “are the researchers in” is the relation phrase
detected by using the Relation script linking the question phrase “who” and the
noun phrase “semantic web research area”.

Based on the scripts described above, we can determine noun phrases, relation
phrases and question phrases of a user’s question. In the next section, we describe
in details the rules used to directly produce the intermediate representation of
a question.

4.4 Semantic analysis module

The semantic analysis module identifies the question-structure and produces the
query-tuples as the intermediate representation (question-structure, question-
class, Term1, Relation, Term2, Term3) of the input question by using the
scripts generated by the previous modules. We define the following question
structures: Normal, UnknTerm, UnknRel, Definition, Compare, ThreeTerm, And,
Or, Clause, Combine, Affirm, Affirm_3Term and Affirm_MoreTuples [7].

Existing scripts of NounPhrase and Relation are potential candidates for
terms and relations respectively, while question phrases are used to detect ques-
tion classes. We directly specify the rule’s response expression to return the
output consisting of a question structure and query-tupples.

For example, the following two rules:
<ManyClass> <Relation> <NounPhrase> ==>

[Normal, (Normal, ManyClass, ∧1, ∧2, ∧3, ?)]
<Entity> <Relation> <NounPhrase> <AND> <NounPhrase> ==>

[And, (Normal, Entity, ∧1, ∧2, ∧3, ?), (Normal, Entity, ∧1, ∧2, ∧5, ?)]

A Semantic Approach for Question Analysis 7

are used to process the following two input questions resspectively where ? rep-
resents a missed element in the tuples:

“How many subjects are there in the semester?”
[ManyClass How many subjects] [Relation are there in] [NounPhrase the

semester]
and
“Which projects are about ontologies and the semantic web?”
[Entity Which projects] [Relation are about] [NounPhrase ontologies] [

AND and] [NounPhrase the semantic web]
If an input question matches a rule’s pattern, the rule’s response expression

specifies and extracts the corresponding elements in the intermediate represen-
tation3. For instance, the intermediate representation of the first question has:

question-structure of Normal
and query-tuple (Normal, ManyClass, subjects, there, semester, ?).

The the above second question has an intermediate representation consisting of:
question-structure of And

and two query-tuples, that is, (Normal, Entity, projects, are, ontologies, ?) and
(Normal, Entity, projects, are, semantic web, ?).
A nice feature in FrameScript is that it allows one to specify additional con-

ditions in the response expression, instead of pattern expression, to select the
appropriate response. A clear advantage is to group ambiguous cases together
as well as conditions to resolve them in a single rule. For example, consider the
following rule with conditional response expressions:

<What> <Relation> <NounPhrase> ==>

[∧(∧2 == is or ∧2 == are) –>
Definition, (Definition, What, ?, ?, ∧3, ?)

| UnknTerm, (UnknTerm, What, ?, ∧2, ∧3, ?)]

Using this rule, the intermediate representation of the question:
“what is the role of the academic regulation?”

has question-structure of UnknTerm and query-tuple (UnknTerm, What, ?, role,
academic regulation, ?). However, also using this rule, the question:

“what is the standard program?”
has an intermediate representation containing the question-structure of Defini-
tion and tuple (Definition, What, ?, ?, standard program, ?).

Actually, creating the rules manually via three modules represented above
is a language independent process as it is straightforward to adapt to a new
domain and a new language.

5 Experiments

We take 170 English question examples of AquaLog’s corpus4 to build a set of 52
rules, which consumed about 12 hours of actual time to create all rules. Table 1

3
Stopwords are removed

4
http://technologies.kmi.open.ac.uk/aqualog/examples.html

8 Dai Quoc Nguyen, Dat Quoc Nguyen, and Son Bao Pham

shows the number of rules for each question-structure type. A point worth noting
is that in 3 rules for question-structure of UnknTerm, there are 2 rules having
conditional response expressions to resolve ambiguity between UnknTerm and
Definition. These rules can be considered as composite rules and they can reveal
ambiguity between different types of question structures. Table 2 presents a list
of pairs of ambiguous question structure types together with the number of rules
to resolve the ambiguity.

Table 1. Number of rules corresponding with each question-structure type

Question-structure type Number of rules

Definition 1
UnknTerm 3
UnknRel 4
Normal 8
Affirm 6
ThreeTerm 10
And 13
Or 1
Clause 6

Table 2. Number of rules with conditional responses

Question-structure type Question-structure type Number of rules

UnknTerm Definition 2
ThreeTerm Normal 1
ThreeTerm UnknTerm 1
Combine Normal 1

As the intermediate representation of our system is different to AquaLog
and there is no common test set available, it is difficult to directly compare our
approach with Aqualog on the English domain.

To demonstrate that our approach could be applied to a new open domain,
we use the above 52 rules to test the data of 500 questions5 from TREC 10.
Table 3 shows the number of correctly analyzed questions corresponding with
each question-structure type.

Table 4 gives the sources of errors for 259 incorrect cases. It clearly shows that
most errors come from unexpected structures. This could be rectified by adding
more rules, especially when we construct a larger variety of question structure
types from a bigger training data such as 5500 questions [4].

This experiment is indicative of the ability in using our system to quickly
build rules for a new domain. We believe that our approach could be applied to

5
http://cogcomp.cs.illinois.edu/Data/QA/QC/TREC_10.label

A Semantic Approach for Question Analysis 9

Table 3. Number of questions corresponding with each question-structure type

Question-structure type Number of questions

Definition 130
UnknTerm 66
UnknRel 4
Normal 20
ThreeTerm 15
And 6

Table 4. Error results

Reason Number of questions

Have special characters (such as / – “ ” ’s) and abbreviations 64
Not have compatible patterns 185
Semantic error in elements of the intermediate representation 10

a new language because creating the rules manually for question analysis is a
language independent process.

6 Conclusion

In this paper, we introduced a rule-based approach for converting a natural
language question into an intermediate representation in a question answering
system. Our system utilizes FrameScript to help users to create intuitive and
compact rules for extracting elements of the intermediate representation. We
constructed rules including patterns and associated responses, in which pattern
is used to match user’ questions and its corresponding response as output is sent
to return the intermediate representation of question. Experimental results of our
system on a wide range of questions are promising with reasonable performance.
We believe our approach can be applied to question answering in open domain
against text corpora that requires an analysis to turn an input question to an
explicit representation of some sort. Our method could be combined nicely with
the processing of annotating corpus and it is straightforward to apply for a new
domain and a new language.

In the future, we will extend our system to assist the rule creation process
on a wide range of questions in open domain and to improve the generalization
capability of existing rules.

Acknowledgements

This work is partially supported by the Research Grant from Vietnam National
University, Hanoi No. QG.10.23.

The authors would like to acknowledge Vietnam National Foundation for
Science and Technology Development (NAFOSTED) for their financial support
to present the work at the conference.

10 Dai Quoc Nguyen, Dat Quoc Nguyen, and Son Bao Pham

References

1. Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural Language Interfaces to
Databases - An Introduction. Natural Language Engineering Vol. 1, 29–81 (1995)

2. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL). pp. 168–175 (2002)

3. Hirschman, L., Gaizauskas, R.: Natural Language Question Answering: The View
from here. Natural Language Engineering Vol. 7, 275–300 (2001)

4. Li, X., Roth, D.: Learning Question Classifiers. In: Proceedings of the 19th Inter-
national Conference on Computational Linguistics. COLING ’02, vol. 1, pp. 1–7
(2002)

5. Lopez, V., Uren, V., Motta, E., Pasin, M.: AquaLog: An Ontology-Driven Question
Answering System for Organizational Semantic Intranets . Web Semantics: Science,
Services and Agents on the World Wide Web Vol. 5, 72–105 (2007)

6. McGill, M., Sammut, C., Westendorp, J., Kadous, W.: Framescript: A Multi-modal
Scripting Language. In: The School of Computer Science and Engineering, UNSW
(Copyright c© 2003-2008)

7. Nguyen, D.Q., Nguyen, D.Q., Pham, S.B.: A vietnamese question answering sys-
tem. In: Proceedings of the 2009 International Conference on Knowledge and Sys-
tems Engineering. pp. 26–32 (2009)

8. Nguyen, D.Q., Nguyen, D.Q., Pham, S.B.: A Vietnamese Text-based Conversa-
tional Agent. In: Proc. of 25th International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems (IEA/AIE) (2012)

9. Nguyen, D.Q., Nguyen, D.Q., Pham, S.B.: Systematic Knowledge Acquisition for
Question Analysis. In: Proceedings of Recent Advances in Natural Language Pro-
cessing (RANLP 2011). pp. 406–412 (2011)

10. Popescu, A.M., Etzioni, O., Kautz, H.: Towards A Theory of Natural Language
Interfaces to Databases. In: Proceedings of the 8th International Conference on
Intelligent User Interfaces. pp. 149–157. IUI ’03 (2003)

11. Sammut, C.: Managing Context in A Conversational Agent. In: Electronic Trans-
actions on Artificial Intelligence. vol. 5, pp. 189–202 (2001)

12. Stratica, N., Kosseim, L., Desai, B.C.: NLIDB Templates for Semantic Parsing.
In: Proceedings of the 8th International Conference on Applications of Natural
Language to Information Systems. pp. 235–241 (2003)

13. Templeton, M., Burger, J.: Problems in Natural-Language Interface to DBMS with
Examples from EUFID. In: Proceedings of the First Conference on Applied Natural
Language Processing. pp. 3–16 (1983)

14. Waltz, D.L.: An English Language Question Answering System for A Large Rela-
tional Database. Communications of the ACM Vol. 21, 526–539 (1978)

