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Abstract. This paper presents a new approach to learn a rule based
system for the task of part of speech tagging. Our approach is based on
an incremental knowledge acquisition methodology where rules are stored
in an exception-structure and new rules are only added to correct errors
of existing rules; thus allowing systematic control of interaction between
rules. Experimental results of our approach on English show that we
achieve in the best accuracy published to date: 97.095% on the Penn
Treebank corpus. We also obtain the best performance for Vietnamese
VietTreeBank corpus.

1 Introduction

Part-of-speech (POS) tagging is one of the most important tasks in Natural Lan-
guage Processing, which assigns a tag representing its lexical category to each
word in a text. After the text is tagged or annotated, it can be used in many
applications such as: machine translation, information retrieval etc. A number
of approaches for this task have been proposed that achieved state-of-the-art re-
sults including: Hidden Markov Model-based approaches [1], Maximum Entropy
Model-based approaches [2] [3] [4], Support Vector Machine algorithm-based ap-
proaches [5], Perceptron learning algorithms [2][6]. All of these approaches are
complex statistics-based approaches while the obtained results are progressing
to the limit. The combination utilizing the advantages of simple rule-based sys-
tems [7] can surpass the limit. However, it is difficult to control the interaction
among a large number of rules.

Brill [7] proposed a method to automatically learn transformation rules for
the POS tagging problem. In Brill’s learning, the selected rule with the highest
score is learned on the context that is generated by all preceding rules. In ad-
ditions, there are interactions between rules with only front-back order, which
means an applied back rule will change the results of all the front rules in the
whole text. Hepple [8] presented an approach with two assumptions for disabling
interactions between rules to reduce the training time while sacrificing a small



fall of accuracy. Ngai and Florian [9] presented a method to impressively reduce
the training time by recalculating the score of transformation rules while keeping
the accuracy.

In this paper, we propose a failure-driven approach to automatically restruc-
ture transformation rules in the form of a Single Classification Ripple Down
Rules (SCRDR) tree [10][11][12]. Our approach allows interactions between rules
but a rule only changes the results of selected previous rules in a controlled con-
text. All rules are structured in a SCRDR tree, which allows a new exception rule
to be added when the system returns an incorrect classification. Moreover, our
system can be easily combined with existing part of speech tagger to obtain an
even better result. For Vietnamese, we obtained the highest accuracy at present
time on VietTreebank corpus [13]. In addition, our approach obtains promising
results in term of the training time in comparison with Brill’s learning.

The rest of paper is organized as follows: in section 2, we provide some related
works including Brill’s learning, SCRDR tree, among others and describe our
approach in section 3. We describe our experiments in section 4 and discussion
in section 5. The conclusion and future works will be presented in section 6.

2 Related Works

2.1 Transformation-based learning

The well-known transformation-based error-driven learning method had been
introduced by Brill [7] for POS tagging problem and this method has been
used in many natural language processing tasks, for example: text chunking,
parsing, named entity recognition. The key idea of the method is to compare the
golden-corpus that was correctly tagged and the current-corpus created through
an initial tagger, and then automatically generate rules to correct errors based
on predefined templates. For example, corresponding with a template “transfer
tag of current word from A to B if the next word is W” is some rules like as:
“transfer tag of current word from JJ to NN if the next word is of” or “transfer
tag of current word from VBD to VBN if the next word is by”...

Transformation-based learning algorithm runs in multiple iterations as fol-
lows:

– Input: Raw-corpus that contains the entire raw text without tags extracted
from the golden-corpus that contains manually tagged word/tag pairs.

– Step 1: Annotated-corpus is generated using an initial tagger where its
input is the raw-corpus.

– Step 2: Comparing the annotated-corpus and the golden-corpus to deter-
mine tag errors in the annotated-corpus. From these errors, all templates are
used for creating potential rules.

– Step 3: Each rule will be applied to a copy of annotated-corpus. The score
of a rule is computed by subtracting of number of additional errors from
number of correctly changed tags. The rule with the best score is selected.

– Step 4: Update the annotated-corpus by applying selected rule.



– Step 5: Stop if the best score is smaller than a predefined threshold T, else
repeat step 2.

– Output: Front-back ordered list of transformation rules.

The training process of Brill’s tagger includes two phases:

– The first-phase is used to assign the most likely tag for unknown words. Ini-
tially, the most likely tag for unknown words starting with a capital letter is
NNP and otherwise it is NN. In this phase, the lexical transformation rules
are used to predict the most likely tag for unknown words. The transforma-
tion templates in this phase depend on character(s), prefix, suffix of a word
and only the preceding/following word. For example, “change the most likely
tag of an unknown-word to Y if the word has suffix x, |x| <= 4”, “change
the most likely tag of an unknown-word to Y if the last (1, 2, 3, 4) characters
of the word are x” or “change the most likely tag of an unknown-word to Y
if the word x ever appears immediately to the left/right of the word”

– The second phase uses transformation-based error-driven learning for pro-
ducing contextual transformation rules. Each word is assigned a tag by the
initial tagger: known-words were annotated with the highest frequency tag
using the lexicon extracted from corpus that was used for learning lexical
transformation rules, and unknown-words were assigned with default tags
NNP or NN and subsequently the ordered lexical transformation rules were
applied.

To tag raw texts, the known-words are assigned by the highest frequency
tag using lexicon extracted from the training corpus and unknown-words are
assigned with default tags NNP or NN and then the ordered lexical transfor-
mation rules are applied to these unknown-words. Finally, the ordered contextual
transformation rules will be applied to all words. In the tagging process, a word
can be tagged multiple times. At each the iteration during the training phase,
all possible rules will be generated and each rule’s score is computed based on
the entire corpus. Therefore, training phase in Brill’s learning takes a significant
amount of time.

The transformation-based learning of Brill allows interactions between learnt
rules. A new rule can change the result of any previous rules.

Hepple [8] presented a method to impressively improve about 950 times
[9] at the training time while there was a small fall in the precision by using
two assumptions: independence and commitment, which disables any interac-
tion between learned rules. The commitment assumption assumes that a tag
was changed at most once by a rule in the whole training period. And the inde-
pendence assumption imposes that if a rule changes a tag, it will not change the
context relevant to the firing of a future rule. Ngai and Florian [9] proposed an
approach called as Fast TBL to significantly reduce about 340 times at the train-
ing time on corpus of about 1 million words while achieved the same accuracy as
a standard transformation-based tagger. The central idea of this approach is to
save the number of corrected-tags and the number of additional errors for each
rule for recalculation when applying a newly selected rule to the current corpus.



Another drawback of Brill’s learning is that it is not able to estimate proba-
bilities of class memberships. An approach presented in [14] shows how to convert
transformation-based rules list to decision trees for resolving this problem.

2.2 Single Classification Ripple Down Rules

Ripple Down Rules (RDR) [10][15][12] were developed to allow users incremen-
tally add rules to an existing rule-based system whiles systematically controlling
interactions between rules and ensuring consistency among existing rules.

Suppose the system’s classification produced by some rule R is deemed in-
correct by the expert. As the justification for the decision that the classification
is incorrect, the expert creates a new rule Re which acts as an exception to the
rule R. The justification would refer to attributes of the case, such as patient
data in the medical domain, or a linguistic pattern matching the case in the
natural language domain[15].

The new rule Re will only be applied to cases for which the provided con-
ditions in Re are true and for which rule R would produce the classification, if
rule Re had not been entered. In other words, in order for Re to be applied to
a case as an exception rule to R, rule R has to be satisfied as well. A sequence
of nested exception rules, of any depth, may occur. Whenever a new exception
rule is added, a difference to the previous rule has to be identified by the ex-
pert. This is a natural activity for the expert when justifying his/her decision to
colleagues or apprentices. The case which triggered the addition of an exception
rule is stored along with the new rule. This case, called the cornerstone case of
the rule R, is retrieved when an exception to R needs to be entered. The cor-
nerstone case is intended to assist the expert in coming up with a justification,
since a valid justification must point at differences between the cornerstone case
and the case at hand for which R does not perform satisfactorily. A number of
RDR-based systems also store with every rule all cases for which the rule has
given a correct conclusion. These systems effectively store all seen cases. This
enables the consistency test to be checked against not only the cornerstone cases
but all previously seen cases.

A SCRDR tree [10][12] is a finite binary tree with two distinct types of edges.
These edges are typically called except and if not (or false) edges as shown in
figure 1. Associated with each node in a tree is a rule. A rule has the form: if α
then β where α is called the condition and β the conclusion.

An SCRDR tree is evaluated for a case by passing the case to the root of the
tree. At any node in the tree, if the condition of a node N’s rule is satisfied by
the case, the case is passed on to the except child of N if it exists. Otherwise,
the case is passed on to N’s if not child if it exists. The conclusion given by
this process is the conclusion from the last node in the SCRDR tree which fired.
To ensure that a conclusion is always given, the root node typically contains a
trivial condition which is always satisfied. This node is called the default node.

A new rule is added to an SCRDR tree when the evaluation process returns
a wrong conclusion using the fired rule R. A new node containing the new rule is
attached to the last node evaluated in the tree provided the new rule is consistent



with the existing knowledge base. This is done by making sure cases that have
been previously classified correctly by the rule R do not match the new rule.
If the node has no exception link, the new node is attached using an exception
link, otherwise an if not link is used.

2.3 Vietnamese POS tagging problems

Dinh and Hoang [16] proposed an approach for Vietnamese POS tagging problem
that gave accuracy of 87% by building an English-Vietnamese bilingual corpus
which contains approximately 5 million words. They tagged the English corpus
using transformation-based learning of Brill [7] and convert POS-annotation tags
from English side to Vietnamese using existing word-alignment tools.

Three available tools using machine learning methods: Conditional Random
Fields [17], Maximum Entropy Model, Support Vector Machine were used to
combine with morpheme-based approach in [18] for Vietnamese POS tagging,
that achieved the highest averaged accuracy using the 5-fold cross-validation of
91.64% on Vietnamese Treebank corpus [13].

3 Our approach

In this section, we describe a transformation-based failure-driven approach to
automatically build a single classification Ripple Down Rule (SCRDR) tree for
POS tagging problem. Figure 2 describes the learning model used in our ap-
proach.

Fig. 1. A part of SCRDR tree for POS tagging.

The Raw corpus is annotated by using an Initial tagger to create the An-
notated corpus. By comparing the annotated corpus with the Golden corpus, an
Object-driven dictionary is generated based on the Object Template which cap-
tures the context containing the current word and its tag, (1st, 2nd, 3rd) previous
and next words and (1st, 2nd, 3rd) previous and next tags in following format
(previous 3rd word, previous 3rd tag, previous 2nd word, previous 2nd tag, previ-
ous 1st word, previous 1st tag, word, currentTag, next 1st word, next 1st tag, next
2nd word, next 2nd tag, next 3rd word, next 3rd tag) in the annotated corpus.



Fig. 2. The diagram describing our approach.

An object-driven dictionary is a set of the format (Object, correct Tag) in
which Object captures the context of the current word in the annotated corpus
and correct Tag is the corresponding tag in the golden corpus.

Rule1: if {word == “object.word”} then tag = “correctTag”
Rule2: if {next1stTag == “object.next1stTag”} then tag = “correctTag”
Rule3: if {prev1stTag == “object.prev1stTag”} then tag = “correctTag”

Fig. 3. Some rule examples.

From the object template, rule templates are created based on the templates
of Brill’s tagger for Rule selector. Examples of rule templates are shown in figure
3 where elements in bold will be replaced by concrete values for creating concrete
rules.

Training algorithm:

– Step 1: Load raw corpus and assign initial tags using an initial tagger.
– Step 2: Create Object-driven dictionary by comparing output of the initial

tagger and the golden corpus.
– Step 3: Build the default node representing the initial tagger.
– Step 4: At a node-FR in SCRDR tree, let SE be the set of elements from

the object-driven dictionary that fired at the node-FR but theirs tags are
incorrect i.e. node-FR gives wrong conclusions for elements in SE.

To select a new exception rule, a list of all concrete rules is generated based
on rule-templates from all elements in SE and unsatisfied cornerstone case of



node-FR. The rule with the highest value by subtracting B from A would be
selected where A is the number of elements in SE that is correctly modified
by the rule and B is the number of elements in SE that is incorrectly changed
by the rule.

The newly selected rule is added to the SCRDR tree where the cornerstone
case is the case in SE that is correctly modified by the selected rule.

This step process is repeated until the score for the selected rule is under a
given threshold. At each iteration, a new exception rule is added to correct
an error made by the existing rule-based system.

To illustrate how the new exception rules are added, lets consider the follow-
ing rule (a node in the SCRDR tree)

if currentTag == “vb” and prev1stTag == “nns” then tag = “vbp”

cc: (‘the’, ‘dt’, ‘latest’, ‘jjs’, ‘results’, ‘nns’, ‘appear’, ‘vb’, ‘in’, ‘in’, ‘today’,
‘nn’, ‘’s’, ‘pos’)

Suppose we have a case that this rule fires but returns a wrong conclusion
i.e. incorrect tag. The following rule can be added as an exception rule of the
rule in the SCRDR tree with the cornerstone case (cc) being the case that was
misclassified originally:

if word == “cut” then tag = “vbn”

cc: (‘keeping’, ‘vbg’, ‘their’, ‘prp$’, ‘people’, ‘nns’, ‘cut’, ‘vb’, ‘off’, ‘rp’,
‘from’, ‘in’, ‘the’, ‘dt’)

To take a further example, suppose we have a new case that the above newly
added rule fires but the conclusion is incorrect. The following exception is added
to correct the mistake:

if prev2ndTag == “dt” then tag = “nn”

cc: (‘to’, ‘to’, ‘the’, ‘dt’, ‘capital-gains’, ‘nns’, ‘cut’, ‘vb’, ‘,’, ‘,’, ‘which’,
‘wdt’, ‘has’, ‘vbz’)

Tagging process:

– Raw texts are tagged by initial tagger to create the annotated texts.

– Make objects to capture context surrounding current word/tag in annotated
texts.

– Each object is classified by SCRDR tree for generating output tag.

In our method, we use two thresholds: one for finding rules for nodes at the
depth of 1 and the other is used for nodes at higher levels. One reason is that
the default node has no cornerstone case.

4 Experiment

We apply our approach to both English and Vietnamese part of speech tagging
tasks.



4.1 Results for English

Following [2] [3] [4] [5] [6], we split the Penn Wall Street Journal Treebank [19]
into training, development and test sets as shown in table 1 for our experiments
for English. We retrained Brill’s tagger on training data at default threshold of 2
resulting in 1595 rules with the time cost for learning contextual transformation
rules of 2700 minutes.

Table 1. Data Set.

DataSet Sections Sentences Tokens

Training 0-18 38,219 912,344
Develop 19-21 5,527 131,768
Test 22-24 5,462 129,654

For our method, RDR tree was built on whole training data using Brill’s
retrained initial tagger as the initial tagger that achieved the baseline accuracies
of 93.67% and 93.58% on development data and test data respectively.

Brill’s retrained tagger achieved an accuracy of 96.57% on development data
while the result of our taggers on development data is shown in table 2. The
accuracy is comparable while our method improves up to 33 times in training
time.

Table 2. Pos tagging in accuracy of development data of our approach.

Threshold Number of
rules

Accuracy (%) Training time
(minutes)

(50, 20) 133 95.76 14
(10, 10) 393 96.21 30
(5, 5) 830 96.42 48
(3, 2) 2517 96.55 82
(1, 1) 18310 96.35 512

Table 3 shows the performance for our method using the best threshold and
Brill’s tagger on test data.

Table 3. Pos tagging accuracy on test data.

Method Accuracy (%)

Brill 96.530
Our approach 96.548

Table 4 shows the accuracy of our method depending on the depth of the
RDR tree.



Table 4. Accuracy and speed tagging in our method on test data on PenIV 2.66GHZ
of CPU, 1G of RAM

Depth Number of
rules

Accuracy
(%)

Speed tagging (num-
ber of words second)

<= 1 1433 96.372 161
<= 2 2467 96.540 160
<= 3 2517 96.548 160

Table 5. Accuracy of our method with different initial taggers on test data.

Initial Tagger (IT) Accuracy
of IT (%)

Accuracy of IT
and RDR tree(%)

Number of rules
in RDR tree

Brill’s tagger 96.53 96.68 322
Tagger of Tsuruoka
and Tsujii

96.987 97.095 130

Table 5 shows the returned results when we used Brill’s retrained tagger and
tagger of Tsuruoka and Tsujii [4] that was trained on same WSJ 0-18 training
data at default parameters as initial taggers for building an RDR tree in our
approach. It can be seen that our approach can be used to improve performance
of existing approaches by adding more exception rules.

4.2 Results for Vietnamese

We ran experiments for Vietnamese on the same corpus as in [18] on Vietnamese
Treebank corpus [13]. This corpus contains approximately 10000 sentences with
a tag set of 17 labels. We randomly divide the corpus into five folds; giving
one fold size of around 44±1K words. Each time, four folds were merged as the
training set and the remaining fold is selected as the test set. Final result is
the averaged results of five runs using the best threshold found for the English
experiment.

Table 6 shows the result of our approach, which we use an open dictionary
assigning the most frequent tag in whole training set for a word as the initial
tagger. For this open dictionary assumption, when a word (in test set) not in
the dictionary, it would be tagged as Np if the first character is an upper letter
or N if otherwise by default. With the open dictionary assumption, the accuracy
of the initial tagger is 90.38%.

Table 6. Five-fold cross validation accuracy of our method in open dictionary assump-
tion.

Method Final accuracy (%)

Open dict 92.24



From table 6, it can be seen that our method achieves a higher accuracy than
accuracy of 91.64% of the method described in [18].

We also trained our method using the closed dictionary assumption where the
initial tagger assigns a word with the most frequent tag that extracted from whole
training and test sets. In addition, we retrained Brill’s tagger for Vietnamese
using the closed dictionary assumption without the process of learning lexical
transformation rules. Both of methods obtained an accuracy of 92.81% at the
initial state.

Table 7 shows the results for our approach and Brill’s tagger in closed dic-
tionary assumption.

Table 7. Five-fold cross validation accuracy in closed dictionary assumption.

Method Final accuracy (%)

Brill’s tagger 94.72
Our method 94.61

It can be seen that our approach is comparable to that of Brill’s in this
corpus. Due to the small size of this corpus, our approach can utilize experts to
add rules instead of learning rule from the corpus.

5 Discussion

For Brill’s approach and Hepple’s approach, a new rule is selected based on the
accuracy of context, so the output of initial tagger is always changed when the
new rule applies. In our approach, objects always are static so that new rules are
selected based on the original state of the output of the initial tagger. Therefore
our approach can be easily combined with existing state of the art taggers to
improve their performance as demonstrated when we improve the existing result
of Tsuruoka and Tsujii [4].

Another important point is that our approach is very suitable to use experts
to add new exception rules given a concrete case at hand that is misclassified
by the system. This is especially important for under-resourced languages where
obtaining a large annotated corpus is difficult.

6 Conclusion

In this paper, we propose a failure-driven approach to automatically restructure
transformation rules in the form of a Single Classification Ripple Down Rules
tree. Our approach allows controlled interactions between rules where a rule only
changes the results of a limited number of other rules. On the Penn Treebank,
our approach achieves the best performance published to date of 97.095%. For
Vietnamese, our approach achieves an accuracy of 92.24% for open-dictionary



assumption and an accuracy of 94.61% for close-dictionary assumption. This is
also the best result to date to the best of our knowledge.

In the future we will involve experts to manually add more exception rules
to the current rule based system to even improve the performance of the system
further.

Another avenue is to use Ngai and Florian’s method [9] to improve the train-
ing time and extend the lexical transformation rule learning of Brill for Viet-
namese.
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